Precision knockdown of EGFR gene expression using radio frequency electromagnetic energy

Abstract

Electromagnetic fields (EMF) in the radio frequency energy (RFE) range can affect cells at the molecular level. Here we report a technology that can record the specific RFE signal of a given molecule, in this case the siRNA of epidermal growth factor receptor (EGFR). We demonstrate that cells exposed to this EGFR siRNA RFE signal have a 30–70% reduction of EGFR mRNA expression and ~60% reduction in EGFR protein expression vs. control treated cells. Specificity for EGFR siRNA effect was confirmed via RNA microarray and antibody dot blot array. The EGFR siRNA RFE decreased cell viability, as measured by Calcein-AM measures, LDH release and Caspase 3 cleavage, and increased orthotopic xenograft survival. The outcomes of this study demonstrate that an RFE signal can induce a specific siRNA-like effect on cells. This technology opens vast possibilities of targeting a broader range of molecules with applications in medicine, agriculture and other areas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Jauchem JR (2008) Effects of low-level radio-frequency (3 kHz–300 GHz) energy on human cardiovascular, reproductive, immune, and other systems: a review of the recent literature. Int J Hyg Environ Health 211:1–29

    Article  PubMed  Google Scholar 

  2. 2.

    Hardell L, Sage C (2008) Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother 62:104–109

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Yoon SY, Kim KT, Jo SJ, Cho AR, Jeon SI, Choi HD, Kim KH, Park GS, Pack JK, Kwon OS, Park WY (2011) Induction of hair growth by insulin-like growth factor-1 in 1763 MHz radiofrequency-irradiated hair follicle cells. PLoS ONE 6:e28474. doi:10.1371/journal.pone.0028474

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Volpe P (2003) Interactions of zero-frequency and oscillating magnetic fields with biostructures and biosystems. Photochem Photobiol Sci 2:637–648

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Ćosić I, Pirogova E, Vojisavljević V, Fang Q (2006) Electromagnetic properties of biomolecules. FME Trans 34:10

    Google Scholar 

  6. 6.

    Montagnier L, Del Giudice E, Aissa J, Lavallee C, Motschwiller S, Capolupo A, Polcari A, Romano P, Tedeschi A, Vitiello G (2015) Transduction of DNA information through water and electromagnetic waves. Electromagn Biol Med 34:106–112. doi:10.3109/15368378.2015.1036072

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Del Giudice E, Fleischmann M, Preparata G, Talpo G (2002) On the “unreasonable” effects of ELF magnetic fields upon a system of ions. Bioelectromagnetics 23:522–530. doi:10.1002/bem.10046

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Butters JT, Figueroa XA, Butters BM (2014) Non-thermal radio frequency stimulation of tubulin polymerization in vitro: a potential therapy for cancer treatment. Open J Biophys 4:22

    Article  Google Scholar 

  9. 9.

    Tsuchihashi K, Okazaki S, Ohmura M, Ishikawa M, Sampetrean O, Onishi N, Wakimoto H, Yoshikawa M, Seishima R, Iwasaki Y, Morikawa T, Abe S, Takao A, Shimizu M, Masuko T, Nagane M, Furnari FB, Akiyama T, Suematsu M, Baba E, Akashi K, Saya H, Nagano O (2016) The EGF receptor promotes the malignant potential of glioma by regulating amino acid transport system xc(-). Cancer Res 76:2954–2963. doi:10.1158/0008-5472

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Cominelli M, Grisanti S, Mazzoleni S, Branca C, Buttolo L, Furlan D, Liserre B, Bonetti MF, Medicina D, Pellegrini V, Buglione M, Liserre R, Pellegatta S, Finocchiaro G, Dalerba P, Facchetti F, Pizzi M, Galli R, Poliani PL (2015) EGFR amplified and overexpressing glioblastomas and association with better response to adjuvant metronomic temozolomide. J Natl Cancer Inst. doi:10.1093/jnci/djv041

    PubMed  Google Scholar 

  11. 11.

    Klingler S, Guo B, Yao J, Yan H, Zhang L, Vaseva AV, Chen S, Canoll P, Horner JW, Wang YA, Paik JH, Ying H, Zheng H (2015) Development of resistance to EGFR-targeted therapy in malignant glioma can occur through EGFR-dependent and -independent mechanisms. Cancer Res 75:2109–2119. doi:10.1158/0008-5472

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Schulte A, Liffers K, Kathagen A, Riethdorf S, Zapf S, Merlo A, Kolbe K, Westphal M, Lamszus K (2013) Erlotinib resistance in EGFR-amplified glioblastoma cells is associated with upregulation of EGFRvIII and PI3Kp110delta. Neuro Oncol 15:1289–1301. doi:10.1093/neuonc/not093

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Ramis G, Thomas-Moya E, Fernandez de Mattos S, Rodriguez J, Villalonga P (2012) EGFR inhibition in glioma cells modulates Rho signaling to inhibit cell motility and invasion and cooperates with temozolomide to reduce cell growth. PLoS ONE 7:e38770. doi:10.1371/journal.pone.0038770

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Hirono S, Umeyama H, Moriguchi I (1984) Electrostatic potential images of drugs targetting dopamine receptors. Chemical Pharm Bull 32:3061–3065

    CAS  Article  Google Scholar 

  15. 15.

    Grant BJ, Gheorghe DM, Zheng W, Alonso M, Huber G, Dlugosz M, McCammon JA, Cross RA (2011) Electrostatically biased binding of kinesin to microtubules. PLoS Biol 9:e1001207 doi:10.1371/journal.pbio.1001207

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Weiner PK, Langridge R, Blaney JM, Schaefer R, Kollman PA (1982) Electrostatic potential molecular surfaces. Proc Natl Acad Sci USA 79:3754–3758

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Ozawa T, James CD (2010) Establishing intracranial brain tumor xenografts with subsequent analysis of tumor growth and response to therapy using bioluminescence imaging. J Vis Exp. doi:10.3791/1986

    Google Scholar 

  18. 18.

    Pisano A, Santolla MF, De Francesco EM, De Marco P, Rigiracciolo DC, Perri MG, Vivacqua A, Abonante S, Cappello AR, Dolce V, Belfiore A, Maggiolini M, Lappano R (2016) GPER, IGF-IR, and EGFR transduction signaling are involved in stimulatory effects of zinc in breast cancer cells and cancer-associated fibroblasts. Mol Carcinog. doi:10.1002/mc.22518

    PubMed  Google Scholar 

  19. 19.

    Yu Y, Sun Y, He S, Yan C, Rui L, Li W, Liu Y (2012) Neuronal Cbl controls biosynthesis of insulin-like peptides in Drosophila melanogaster. Mol Cell Biol 32:3610–3623. doi:10.1128/MCB.00592-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Flageng MH, Knappskog S, Haynes BP, Lonning PE, Mellgren G (2013) Inverse regulation of EGFR/HER1 and HER2-4 in normal and malignant human breast tissue. PLoS ONE 8:e74618. doi:10.1371/journal.pone.0074618

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Li Y, Vongsangnak W, Chen L, Shen B (2014) Integrative analysis reveals disease-associated genes and biomarkersMammoth mountains for prostate cancer progression. BMC Med Genomics 7(Suppl 1):S3. doi:10.1186/1755-8794-7-S1-S3

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Zhao Y, Xiao A, Dipierro CG, Abdel-Fattah R, Amos S, Redpath GT, Carpenter JE, Pieper RO, Hussaini IM (2008) H-Ras increases urokinase expression and cell invasion in genetically modified human astrocytes through Ras/Raf/MEK signaling pathway. Glia 56:917–924. doi:10.1002/glia.20667

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Lo HW, Hung MC (2006) Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer 94:184–188

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of IVY Center for Advanced Brain Tumor Treatment at Swedish Neuroscience Institute for useful discussion of experimental approaches and data. This work was carried out through the general support of Center for Advanced Brain Tumor Treatment General Fund, Nativis Inc General Support grant and Swedish Foundation.

Author contributions

MB and JB developed Voyager technology and designed devices; IU, HF, JGY and PH designed experimental set up, performed cell culture experiments, and analyzed the data; IU, CC, XF, and HF wrote and corrected paper. MP, TN and TO designed, conducted, data analyzed in vivo experiments.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ilya V. Ulasov or Charles Cobbs.

Ethics declarations

Conflict of interests

J.B. and M.B. are employed full time at Nativis, Inc. I.U. and X.F. are partially employed by Nativis, Inc. CC serves as a consultant for Nativis, Inc.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 564 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ulasov, I.V., Foster, H., Butters, M. et al. Precision knockdown of EGFR gene expression using radio frequency electromagnetic energy. J Neurooncol 133, 257–264 (2017). https://doi.org/10.1007/s11060-017-2440-x

Download citation

Keywords

  • Electromagnetic energy
  • Radio frequency
  • EGFR