Journal of Neuro-Oncology

, Volume 133, Issue 2, pp 257–264 | Cite as

Precision knockdown of EGFR gene expression using radio frequency electromagnetic energy

  • Ilya V. UlasovEmail author
  • Haidn Foster
  • Mike Butters
  • Jae-Geun Yoon
  • Tomoko Ozawa
  • Theodore Nicolaides
  • Xavier Figueroa
  • Parvinder Hothi
  • Michael Prados
  • John Butters
  • Charles CobbsEmail author
Laboratory Investigation


Electromagnetic fields (EMF) in the radio frequency energy (RFE) range can affect cells at the molecular level. Here we report a technology that can record the specific RFE signal of a given molecule, in this case the siRNA of epidermal growth factor receptor (EGFR). We demonstrate that cells exposed to this EGFR siRNA RFE signal have a 30–70% reduction of EGFR mRNA expression and ~60% reduction in EGFR protein expression vs. control treated cells. Specificity for EGFR siRNA effect was confirmed via RNA microarray and antibody dot blot array. The EGFR siRNA RFE decreased cell viability, as measured by Calcein-AM measures, LDH release and Caspase 3 cleavage, and increased orthotopic xenograft survival. The outcomes of this study demonstrate that an RFE signal can induce a specific siRNA-like effect on cells. This technology opens vast possibilities of targeting a broader range of molecules with applications in medicine, agriculture and other areas.


Electromagnetic energy Radio frequency EGFR 



We thank all members of IVY Center for Advanced Brain Tumor Treatment at Swedish Neuroscience Institute for useful discussion of experimental approaches and data. This work was carried out through the general support of Center for Advanced Brain Tumor Treatment General Fund, Nativis Inc General Support grant and Swedish Foundation.

Author contributions

MB and JB developed Voyager technology and designed devices; IU, HF, JGY and PH designed experimental set up, performed cell culture experiments, and analyzed the data; IU, CC, XF, and HF wrote and corrected paper. MP, TN and TO designed, conducted, data analyzed in vivo experiments.

Compliance with ethical standards

Conflict of interests

J.B. and M.B. are employed full time at Nativis, Inc. I.U. and X.F. are partially employed by Nativis, Inc. CC serves as a consultant for Nativis, Inc.

Supplementary material

11060_2017_2440_MOESM1_ESM.docx (564 kb)
Supplementary material 1 (DOCX 564 KB)


  1. 1.
    Jauchem JR (2008) Effects of low-level radio-frequency (3 kHz–300 GHz) energy on human cardiovascular, reproductive, immune, and other systems: a review of the recent literature. Int J Hyg Environ Health 211:1–29CrossRefPubMedGoogle Scholar
  2. 2.
    Hardell L, Sage C (2008) Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother 62:104–109CrossRefPubMedGoogle Scholar
  3. 3.
    Yoon SY, Kim KT, Jo SJ, Cho AR, Jeon SI, Choi HD, Kim KH, Park GS, Pack JK, Kwon OS, Park WY (2011) Induction of hair growth by insulin-like growth factor-1 in 1763 MHz radiofrequency-irradiated hair follicle cells. PLoS ONE 6:e28474. doi: 10.1371/journal.pone.0028474 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Volpe P (2003) Interactions of zero-frequency and oscillating magnetic fields with biostructures and biosystems. Photochem Photobiol Sci 2:637–648CrossRefPubMedGoogle Scholar
  5. 5.
    Ćosić I, Pirogova E, Vojisavljević V, Fang Q (2006) Electromagnetic properties of biomolecules. FME Trans 34:10Google Scholar
  6. 6.
    Montagnier L, Del Giudice E, Aissa J, Lavallee C, Motschwiller S, Capolupo A, Polcari A, Romano P, Tedeschi A, Vitiello G (2015) Transduction of DNA information through water and electromagnetic waves. Electromagn Biol Med 34:106–112. doi: 10.3109/15368378.2015.1036072 CrossRefPubMedGoogle Scholar
  7. 7.
    Del Giudice E, Fleischmann M, Preparata G, Talpo G (2002) On the “unreasonable” effects of ELF magnetic fields upon a system of ions. Bioelectromagnetics 23:522–530. doi: 10.1002/bem.10046 CrossRefPubMedGoogle Scholar
  8. 8.
    Butters JT, Figueroa XA, Butters BM (2014) Non-thermal radio frequency stimulation of tubulin polymerization in vitro: a potential therapy for cancer treatment. Open J Biophys 4:22CrossRefGoogle Scholar
  9. 9.
    Tsuchihashi K, Okazaki S, Ohmura M, Ishikawa M, Sampetrean O, Onishi N, Wakimoto H, Yoshikawa M, Seishima R, Iwasaki Y, Morikawa T, Abe S, Takao A, Shimizu M, Masuko T, Nagane M, Furnari FB, Akiyama T, Suematsu M, Baba E, Akashi K, Saya H, Nagano O (2016) The EGF receptor promotes the malignant potential of glioma by regulating amino acid transport system xc(-). Cancer Res 76:2954–2963. doi: 10.1158/0008-5472 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cominelli M, Grisanti S, Mazzoleni S, Branca C, Buttolo L, Furlan D, Liserre B, Bonetti MF, Medicina D, Pellegrini V, Buglione M, Liserre R, Pellegatta S, Finocchiaro G, Dalerba P, Facchetti F, Pizzi M, Galli R, Poliani PL (2015) EGFR amplified and overexpressing glioblastomas and association with better response to adjuvant metronomic temozolomide. J Natl Cancer Inst. doi: 10.1093/jnci/djv041 PubMedGoogle Scholar
  11. 11.
    Klingler S, Guo B, Yao J, Yan H, Zhang L, Vaseva AV, Chen S, Canoll P, Horner JW, Wang YA, Paik JH, Ying H, Zheng H (2015) Development of resistance to EGFR-targeted therapy in malignant glioma can occur through EGFR-dependent and -independent mechanisms. Cancer Res 75:2109–2119. doi: 10.1158/0008-5472 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schulte A, Liffers K, Kathagen A, Riethdorf S, Zapf S, Merlo A, Kolbe K, Westphal M, Lamszus K (2013) Erlotinib resistance in EGFR-amplified glioblastoma cells is associated with upregulation of EGFRvIII and PI3Kp110delta. Neuro Oncol 15:1289–1301. doi: 10.1093/neuonc/not093 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ramis G, Thomas-Moya E, Fernandez de Mattos S, Rodriguez J, Villalonga P (2012) EGFR inhibition in glioma cells modulates Rho signaling to inhibit cell motility and invasion and cooperates with temozolomide to reduce cell growth. PLoS ONE 7:e38770. doi: 10.1371/journal.pone.0038770 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hirono S, Umeyama H, Moriguchi I (1984) Electrostatic potential images of drugs targetting dopamine receptors. Chemical Pharm Bull 32:3061–3065CrossRefGoogle Scholar
  15. 15.
    Grant BJ, Gheorghe DM, Zheng W, Alonso M, Huber G, Dlugosz M, McCammon JA, Cross RA (2011) Electrostatically biased binding of kinesin to microtubules. PLoS Biol 9:e1001207 doi: 10.1371/journal.pbio.1001207 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Weiner PK, Langridge R, Blaney JM, Schaefer R, Kollman PA (1982) Electrostatic potential molecular surfaces. Proc Natl Acad Sci USA 79:3754–3758CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ozawa T, James CD (2010) Establishing intracranial brain tumor xenografts with subsequent analysis of tumor growth and response to therapy using bioluminescence imaging. J Vis Exp. doi: 10.3791/1986 Google Scholar
  18. 18.
    Pisano A, Santolla MF, De Francesco EM, De Marco P, Rigiracciolo DC, Perri MG, Vivacqua A, Abonante S, Cappello AR, Dolce V, Belfiore A, Maggiolini M, Lappano R (2016) GPER, IGF-IR, and EGFR transduction signaling are involved in stimulatory effects of zinc in breast cancer cells and cancer-associated fibroblasts. Mol Carcinog. doi: 10.1002/mc.22518 PubMedGoogle Scholar
  19. 19.
    Yu Y, Sun Y, He S, Yan C, Rui L, Li W, Liu Y (2012) Neuronal Cbl controls biosynthesis of insulin-like peptides in Drosophila melanogaster. Mol Cell Biol 32:3610–3623. doi: 10.1128/MCB.00592-12 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Flageng MH, Knappskog S, Haynes BP, Lonning PE, Mellgren G (2013) Inverse regulation of EGFR/HER1 and HER2-4 in normal and malignant human breast tissue. PLoS ONE 8:e74618. doi: 10.1371/journal.pone.0074618 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li Y, Vongsangnak W, Chen L, Shen B (2014) Integrative analysis reveals disease-associated genes and biomarkersMammoth mountains for prostate cancer progression. BMC Med Genomics 7(Suppl 1):S3. doi: 10.1186/1755-8794-7-S1-S3 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhao Y, Xiao A, Dipierro CG, Abdel-Fattah R, Amos S, Redpath GT, Carpenter JE, Pieper RO, Hussaini IM (2008) H-Ras increases urokinase expression and cell invasion in genetically modified human astrocytes through Ras/Raf/MEK signaling pathway. Glia 56:917–924. doi: 10.1002/glia.20667 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lo HW, Hung MC (2006) Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer 94:184–188CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ilya V. Ulasov
    • 1
    Email author
  • Haidn Foster
    • 1
  • Mike Butters
    • 2
  • Jae-Geun Yoon
    • 1
  • Tomoko Ozawa
    • 3
  • Theodore Nicolaides
    • 3
  • Xavier Figueroa
    • 2
  • Parvinder Hothi
    • 1
  • Michael Prados
    • 3
  • John Butters
    • 2
  • Charles Cobbs
    • 1
    Email author
  1. 1.Ben & Catherine Ivy Center for Advanced Brain Tumor TreatmentSwedish Neuroscience InstituteSeattleUSA
  2. 2.Nativis Inc.SeattleUSA
  3. 3.Department of Neurosurgery, Brain Tumor Research CenterUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations