Skip to main content

Advertisement

Log in

Flow arrest intra-arterial delivery of small TAT-decorated and neutral micelles to gliomas

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The cell-penetrating trans-activator of transcription (TAT) is a cationic peptide derived from human immunodeficiency virus-1. It has been used to facilitate macromolecule delivery to various cell types. This cationic peptide is capable of crossing the blood–brain barrier and therefore might be useful for enhancing the delivery of drugs that target brain tumors. Here we test the efficiency with which relatively small (20 nm) micelles can be delivered by an intra-arterial route specifically to gliomas. Utilizing the well-established method of flow-arrest intra-arterial injection we compared the degree of brain tumor deposition of cationic TAT-decorated micelles versus neutral micelles. Our in vivo and post-mortem analyses confirm glioma-specific deposition of both TAT-decorated and neutral micelles. Increased tumor deposition conferred by the positive charge on the TAT-decorated micelles was modest. Computational modeling suggested a decreased relevance of particle charge at the small sizes tested but not for larger particles. We conclude that continued optimization of micelles may represent a viable strategy for targeting brain tumors after intra-arterial injection. Particle size and charge are important to consider during the directed development of nanoparticles for intra-arterial delivery to brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ellis JA, Banu M, Hossain SS, Singh-Moon R, Lavine SD, Bruce JN, Joshi S (2015) Reassessing the role of intra-arterial drug delivery for glioblastoma multiforme treatment. J Drug Deliv 2015:405735. doi:10.1155/2015/405735

    Article  PubMed  PubMed Central  Google Scholar 

  2. Joshi S, Ellis JA, Ornstein E, Bruce JN (2015) Intraarterial drug delivery for glioblastoma mutiforme: will the phoenix rise again? J Neurooncol 124(3):333–343. doi:10.1007/s11060-015-1846-6

    Article  CAS  PubMed  Google Scholar 

  3. Riina HA, Knopman J, Greenfield JP, Fralin S, Gobin YP, Tsiouris AJ, Souweidane MM, Boockvar JA (2010) Balloon-assisted superselective intra-arterial cerebral infusion of bevacizumab for malignant brainstem glioma. A technical note. Interv Neuroradiol 16(1):71–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hashimoto T, Young WL, Aagaard BD, Joshi S, Ostapkovich ND, Pile-Spellman J (2000) Adenosine-induced ventricular asystole to induce transient profound systemic hypotension in patients undergoing endovascular therapy. Dose-response characteristics. Anesthesiology 93(4):998–1001

    Article  PubMed  Google Scholar 

  5. Pile-Spellman J, Young WL, Joshi S, Duong DH, Vang MC, Hartmann A, Kahn RA, Rubin DA, Prestigiacomo CJ, Ostapkovich ND (1999) Adenosine-induced cardiac pause for endovascular embolization of cerebral arteriovenous malformations: technical case report. Neurosurgery 44(4):881–886 (discussion 886–887)

    Article  CAS  PubMed  Google Scholar 

  6. Joshi S, Wang M, Etu JJ, Suckow RF, Cooper TB, Feinmark SJ, Bruce JN, Fine RL (2008) Transient cerebral hypoperfusion enhances intraarterial carmustine deposition into brain tissue. J Neurooncol 86(2):123–132. doi:10.1007/s11060-007-9450-z

    Article  CAS  PubMed  Google Scholar 

  7. Joshi S, Singh-Moon RP, Wang M, Chaudhuri DB, Holcomb M, Straubinger NL, Bruce JN, Bigio IJ, Straubinger RM (2014) Transient cerebral hypoperfusion assisted intraarterial cationic liposome delivery to brain tissue. J Neurooncol 118(1):73–82. doi:10.1007/s11060-014-1421-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang M, Etu J, Joshi S (2007) Enhanced disruption of the blood brain barrier by intracarotid mannitol injection during transient cerebral hypoperfusion in rabbits. J Neurosurg Anesthesiol 19(4):249–256. doi:10.1097/ANA.0b013e3181453851

    Article  PubMed  Google Scholar 

  9. Joshi S, Cooke JR, Chan DK, Ellis JA, Hossain SS, Singh-Moon RP, Wang M, Bigio IJ, Bruce JN, Straubinger RM (2016) Liposome size and charge optimization for intraarterial delivery to gliomas. Drug Deliv Transl Res 6(3):225–233. doi:10.1007/s13346-016-0294-y

    Article  CAS  PubMed  Google Scholar 

  10. Nguyen J, Sievers R, Motion JP, Kivimae S, Fang Q, Lee RJ (2015) Delivery of lipid micelles into infarcted myocardium using a lipid-linked matrix metalloproteinase targeting peptide. Mol Pharm 12(4):1150–1157. doi:10.1021/mp500653y

    Article  CAS  PubMed  Google Scholar 

  11. Walsh CL, Nguyen J, Szoka FC (2012) Synthesis and characterization of novel zwitterionic lipids with pH-responsive biophysical properties. Chem Commun 48(45):5575–5577. doi:10.1039/c2cc31710a

    Article  CAS  Google Scholar 

  12. Bigio IJ, Bown SG (2004) Spectroscopic sensing of cancer and cancer therapy: current status of translational research. Cancer Biol Ther 3(3):259–267

    Article  CAS  PubMed  Google Scholar 

  13. Mourant JR, Johnson TM, Los G, Bigio IJ (1999) Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements. Phys Med Biol 44(5):1397–1417

    Article  CAS  PubMed  Google Scholar 

  14. Reif R, Wang M, Joshi S, A’Amar O, Bigio IJ (2007) Optical method for real-time monitoring of drug concentrations facilitates the development of novel methods for drug delivery to brain tissue. J Biomed Opt 12(3):034036

    Article  PubMed  Google Scholar 

  15. Ergin A, Wang M, Zhang J, Bigio I, Joshi S (2012) Noninvasive in vivo optical assessment of blood brain barrier permeability and brain tissue drug deposition in rabbits. J Biomed Opt 17(5):057008

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wilkins DE, Raaphorst GP, Saunders JK, Sutherland GR, Smith IC (1995) Correlation between Gd-enhanced MR imaging and histopathology in treated and untreated 9L rat brain tumors. Magn Reson Imaging 13(1):89–96

    Article  CAS  PubMed  Google Scholar 

  17. Fross RD, Warnke PC, Groothuis DR (1991) Blood flow and blood-to-tissue transport in 9L gliosarcomas: the role of the brain tumor model in drug delivery research. J Neurooncol 11(3):185–197

    Article  CAS  PubMed  Google Scholar 

  18. Barth RF, Kaur B (2009) Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol 94(3):299–312. doi:10.1007/s11060-009-9875-7

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hossain SS, Hossainy SFA, Bazilevs Y, Calo VM, Hughes TJR (2012) Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls. Comput Mech 49(2):213–242

    Article  Google Scholar 

  20. Hossain SS, Zhang Y, Liang X, Hussain F, Ferrari M, Hughes TJ, Decuzzi P (2013) In silico vascular modeling for personalized nanoparticle delivery. Nanomedicine 8(3):343–357. doi:10.2217/nnm.12.124

    Article  CAS  PubMed  Google Scholar 

  21. Hossain SS, Hughes TJ, Decuzzi P (2014) Vascular deposition patterns for nanoparticles in an inflamed patient-specific arterial tree. Biomech Model Mechanobiol 13(3):585–597. doi:10.1007/s10237-013-0520-1

    Article  PubMed  Google Scholar 

  22. Joshi S, Singh-Moon R, Wang M, Chaudhuri DB, Ellis JA, Bruce JN, Bigio IJ, Straubinger RM (2014) Cationic surface charge enhances early regional deposition of liposomes after intracarotid injection. J Neurooncol 120(3):489–497. doi:10.1007/s11060-014-1584-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Joshi S, Singh-Moon RP, Ellis JA, Chaudhuri DB, Wang M, Reif R, Bruce JN, Bigio IJ, Straubinger RM (2015) Cerebral hypoperfusion-assisted intra-arterial deposition of liposomes in normal and glioma-bearing rats. Neurosurgery 76(1):92–100. doi:10.1227/NEU.0000000000000552

    Article  PubMed  PubMed Central  Google Scholar 

  24. Joshi S, Ellis JA, Emala CW (2014) Revisiting intra-arterial drug delivery for treating brain diseases or is it “deja-vu, all over again”? J Neuroanaesth Crit Care 1(2):108–115. doi:10.4103/2348-0548.130386

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cooke JN, Hossain S, Ellis JE, Joshi S (2016) Limitations of intraarterial drug delivery without optimized formulations revealed by pharmacokinetic modeling (Abstract, accepted for the Proceedings of Society of Neuroanesthesiology and Critical Care 44th Annual Meeting, Chicago IL). J Neurosurg Anesthesiol 28(4):493–494

    Google Scholar 

  26. Dedrick RL (1988) Arterial drug infusion: pharmacokinetic problems and pitfalls. J Natl Cancer Inst 80(2):84–89

    Article  CAS  PubMed  Google Scholar 

  27. Cooke JN, Ellis JA, Hossain S, Nguyen J, Bruce JN, Joshi S (2016) Computational pharmacokinetic rationale for intra-arterial delivery to the brain. Drug Deliv Transl Res 6(5):622–629. doi:10.1007/s13346-016-0319-6

    Article  CAS  PubMed  Google Scholar 

  28. Kang T, Zhu Q, Jiang D, Feng X, Feng J, Jiang T, Yao J, Jing Y, Song Q, Jiang X, Gao X, Chen J (2016) Synergistic targeting tenascin C and neuropilin-1 for specific penetration of nanoparticles for anti-glioblastoma treatment. Biomaterials 101:60–75. doi:10.1016/j.biomaterials.2016.05.037

    Article  CAS  PubMed  Google Scholar 

  29. Munson JM, Bellamkonda RV, Swartz MA (2013) Interstitial flow in a 3D microenvironment increases glioma invasion by a CXCR4-dependent mechanism. Cancer Res 73(5):1536–1546. doi:10.1158/0008-5472.CAN-12-2838

    Article  CAS  PubMed  Google Scholar 

  30. Madani F, Lindberg S, Langel U, Futaki S, Graslund A (2011) Mechanisms of cellular uptake of cell-penetrating peptides. Journal Biophys 2011:414729. doi:10.1155/2011/414729

    Article  Google Scholar 

  31. Joshi S, Wang M, Singh-Moon R (2013) Feasibility of intra-arterial drug delivery to brain tissue using cell penetrating peptides. J Neurosurg Anesthesiol 25(4):465. doi:10.1097/ANA.0b013e3182a4d5ff

    Google Scholar 

  32. Lohcharoenkal W, Manosaroi A, Gotz F, Werner RG, Manosroi W, Manosaroi J (2011) Potent enhancement of GFP uptake into HT-29 cells and rat skin permeation by coincubation with tat peptide. J Pharm Sci 100(11):4766–4773. doi:10.1002/jps.22671

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

National Cancer Institute at the National Institutes of Health RO1-CA-138643.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Joshi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed were in accordance with the ethical standards of Columbia University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, J., Hossain, S.S., Cooke, J.R.N. et al. Flow arrest intra-arterial delivery of small TAT-decorated and neutral micelles to gliomas. J Neurooncol 133, 77–85 (2017). https://doi.org/10.1007/s11060-017-2429-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2429-5

Keywords

Navigation