Skip to main content
Log in

MiR-198 enhances temozolomide sensitivity in glioblastoma by targeting MGMT

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Glioblastoma is one of the most frequent and aggressive brain tumors. Accumulating evidence indicates that microRNAs are involved in glioma proliferation, invasion and drug resistance. Previous studies showed that miR-198 is downregulated in glioblastoma. However, the function of miR-198 in glioblastoma is still unclear. In this study, we report that miR-198 levels were greatly downregulated in glioblastoma specimens and decreased expression of miR-198 was associated with poor prognosis in patients with glioblastoma. And overexpression of miR-198 increased chemosensitivity to temozolomide in vitro and in vivo. O6-methylguanine-DNA methyltransferase (MGMT) was identified as a direct target of miR-198, and miR-198 overexpression prevented the protein translation of MGMT. Furthermore, overexpression of MGMT restored miR-198-induced chemosensitivity to temozolomide. Moreover, the protein levels of MGMT were upregulated in clinical glioblastoma specimens and inversely correlated with miR-198 levels. In conclusion, our studies revealed that MiR-198 induces chemosensitivity in glioblastoma by targeting MGMT and that miR-198 may be used as a new diagnostic marker and therapeutic target for glioblastoma in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. doi:10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  2. Villano JL, Seery TE, Bressler LR (2009) Temozolomide in malignant gliomas: current use and future targets. Cancer Chemother Pharmacol 64:647–655. doi:10.1007/s00280-009-1050-5

    Article  CAS  PubMed  Google Scholar 

  3. Sarkaria JN, Kitange GJ, James CD, Plummer R, Calvert H, Weller M, Wick W (2008) Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res 14:2900–2908. doi:10.1158/1078-0432.ccr-07-1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Friedman HS, Kerby T, Calvert H (2000) Temozolomide and treatment of malignant glioma. Clin Cancer Res 6:2585–2597

    CAS  PubMed  Google Scholar 

  5. Belanich M, Randall T, Pastor MA, Kibitel JT, Alas LG, Dolan ME, Schold SC Jr, Gander M, Lejeune FJ, Li BF, White AB, Wasserman P, Citron ML, Yarosh DB (1996) Intracellular Localization and intercellular heterogeneity of the human DNA repair protein O(6)-methylguanine-DNA methyltransferase. Cancer Chemother Pharmacol 37:547–555

    Article  CAS  PubMed  Google Scholar 

  6. Friedman HS, McLendon RE, Kerby T, Dugan M, Bigner SH, Henry AJ, Ashley DM, Krischer J, Lovell S, Rasheed K, Marchev F, Seman AJ, Cokgor I, Rich J, Stewart E, Colvin OM, Provenzale JM, Bigner DD, Haglund MM, Friedman AH, Modrich PL (1998) DNA mismatch repair and O6-alkylguanine-DNA alkyltransferase analysis and response to Temodal in newly diagnosed malignant glioma. J Clin Oncol 16:3851–3857

    Article  CAS  PubMed  Google Scholar 

  7. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132:4653–4662. doi:10.1242/dev.02073

    Article  CAS  PubMed  Google Scholar 

  8. Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS (2005) Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 15:331–341. doi:10.1016/j.sbi.2005.05.006

    Article  CAS  PubMed  Google Scholar 

  9. Sontheimer EJ, Carthew RW (2005) Silence from within: endogenous siRNAs and miRNAs. Cell 122:9–12. doi:10.1016/j.cell.2005.06.030

    Article  CAS  PubMed  Google Scholar 

  10. Sun K, Lai EC (2013) Adult-specific functions of animal microRNAs. Nat Rev Genet 14:535–548. doi:10.1038/nrg3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ramakrishnan V, Kushwaha D, Koay DC, Reddy H, Mao Y, Zhou L, Ng K, Zinn P, Carter B, Chen CC (2011) Post-transcriptional regulation of O(6)-methylguanine-DNA methyltransferase MGMT in glioblastomas. Cancer Biomark 10:185–193. doi:10.3233/cbm-2012-0245

    Article  CAS  PubMed  Google Scholar 

  12. Slaby O, Lakomy R, Fadrus P, Hrstka R, Kren L, Lzicarova E, Smrcka M, Svoboda M, Dolezalova H, Novakova J, Valik D, Vyzula R, Michalek J (2010) MicroRNA-181 family predicts response to concomitant chemoradiotherapy with temozolomide in glioblastoma patients. Neoplasma 57:264–269

    Article  CAS  PubMed  Google Scholar 

  13. Zhang W, Zhang J, Hoadley K, Kushwaha D, Ramakrishnan V, Li S, Kang C, You Y, Jiang C, Song SW, Jiang T, Chen CC (2012) miR-181d: a predictive glioblastoma biomarker that downregulates MGMT expression. Neuro-Oncol 14:712–719. doi:10.1093/neuonc/nos089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kreth S, Limbeck E, Hinske LC, Schutz SV, Thon N, Hoefig K, Egensperger R, Kreth FW (2013) In human glioblastomas transcript elongation by alternative polyadenylation and miRNA targeting is a potent mechanism of MGMT silencing. Acta Neuropathol 125:671–681. doi:10.1007/s00401-013-1081-1

    Article  CAS  PubMed  Google Scholar 

  15. Ujifuku K, Mitsutake N, Takakura S, Matsuse M, Saenko V, Suzuki K, Hayashi K, Matsuo T, Kamada K, Nagata I, Yamashita S (2010) miR-195, miR-455-3p and miR-10a(*) are implicated in acquired temozolomide resistance in glioblastoma multiforme cells. Cancer Lett 296:241–248. doi:10.1016/j.canlet.2010.04.013

    Article  CAS  PubMed  Google Scholar 

  16. Liu S, Yin F, Zhang J, Wicha MS, Chang AE, Fan W, Chen L, Fan M, Li Q (2014) Regulatory roles of miRNA in the human neural stem cell transformation to glioma stem cells. J Cell Biochem 115:1368–1380. doi:10.1002/jcb.24786

    Article  CAS  PubMed  Google Scholar 

  17. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. doi:10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, Bayani J, Head R, Lee M, Bernstein M, Squire JA, Smith A, Dirks P (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4:568–580. doi:10.1016/j.stem.2009.03.014

    Article  CAS  PubMed  Google Scholar 

  19. Nie E, Jin X, Wu W, Yu T, Zhou X, Zhi T, Shi Z, Zhang J, Liu N, You Y (2016) BACH1 promotes temozolomide resistance in glioblastoma through antagonizing the function of p53. Sci Rep 6:39743. doi:10.1038/srep39743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nie E, Zhang X, Xie S, Shi Q, Hu J, Meng Q, Zhou X, Yu R (2015) Beta-catenin is involved in Bex2 down-regulation induced glioma cell invasion/migration inhibition. Biochem Biophys Res Commun 456:494–499. doi:10.1016/j.bbrc.2014.11.113

    Article  CAS  PubMed  Google Scholar 

  21. Wang YY, Sun G, Luo H, Wang XF, Lan FM, Yue X, Fu LS, Pu PY, Kang CS, Liu N, You YP (2012) MiR-21 modulates hTERT through a STAT3-dependent manner on glioblastoma cell growth. CNS Neurosci Ther 18:722–728. doi:10.1111/j.1755-5949.2012.00349.x

    Article  CAS  PubMed  Google Scholar 

  22. Moller HG, Rasmussen AP, Andersen HH, Johnsen KB, Henriksen M, Duroux M (2013) A systematic review of microRNA in glioblastoma multiforme: micro-modulators in the mesenchymal mode of migration and invasion. Mol Neurobiol 47:131–144. doi:10.1007/s12035-012-8349-7

    Article  CAS  PubMed  Google Scholar 

  23. Johannessen TC, Bjerkvig R, Tysnes BB (2008) DNA repair and cancer stem-like cells–potential partners in glioma drug resistance? Cancer Treat Rev 34:558–567. doi:10.1016/j.ctrv.2008.03.125

    Article  CAS  PubMed  Google Scholar 

  24. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797

    CAS  PubMed  Google Scholar 

  25. Zhao W, Soejima H, Higashimoto K, Nakagawachi T, Urano T, Kudo S, Matsukura S, Matsuo S, Joh K, Mukai T (2005) The essential role of histone H3 Lys9 di-methylation and MeCP2 binding in MGMT silencing with poor DNA methylation of the promoter CpG island. J Biochem 137:431–440. doi:10.1093/jb/mvi048

    Article  CAS  PubMed  Google Scholar 

  26. Quintavalle C, Mangani D, Roscigno G, Romano G, Diaz-Lagares A, Iaboni M, Donnarumma E, Fiore D, De Marinis P, Soini Y, Esteller M, Condorelli G (2013) MiR-221/222 target the DNA methyltransferase MGMT in glioma cells. PLoS ONE 8:e74466. doi:10.1371/journal.pone.0074466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kushwaha D, Ramakrishnan V, Ng K, Steed T, Nguyen T, Futalan D, Akers JC, Sarkaria J, Jiang T, Chowdhury D, Carter BS, Chen CC (2014) A genome-wide miRNA screen revealed miR-603 as a MGMT-regulating miRNA in glioblastomas. Oncotarget 5:4026–4039. doi:10.18632/oncotarget.1974

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nakagawachi T, Soejima H, Urano T, Zhao W, Higashimoto K, Satoh Y, Matsukura S, Kudo S, Kitajima Y, Harada H, Furukawa K, Matsuzaki H, Emi M, Nakabeppu Y, Miyazaki K, Sekiguchi M, Mukai T (2003) Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer. Oncogene 22:8835–8844. doi:10.1038/sj.onc.1207183

    CAS  PubMed  Google Scholar 

  29. Costello JF, Futscher BW, Kroes RA, Pieper RO (1994) Methylation-related chromatin structure is associated with exclusion of transcription factors from and suppressed expression of the O-6-methylguanine DNA methyltransferase gene in human glioma cell lines. Mol Cell Biol 14:6515–6521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lavon I, Fuchs D, Zrihan D, Efroni G, Zelikovitch B, Fellig Y, Siegal T (2007) Novel mechanism whereby nuclear factor kappaB mediates DNA damage repair through regulation of O(6)-methylguanine-DNA-methyltransferase. Cancer Res 67:8952–8959. doi:10.1158/0008-5472.can-06-3820

    Article  CAS  PubMed  Google Scholar 

  31. Bhakat KK, Mitra S (2000) Regulation of the human O(6)-methylguanine-DNA methyltransferase gene by transcriptional coactivators cAMP response element-binding protein-binding protein and p300. J Biol Chem 275:34197–34204. doi:10.1074/jbc.M005447200

    Article  CAS  PubMed  Google Scholar 

  32. Boldogh I, Ramana CV, Chen Z, Biswas T, Hazra TK, Grosch S, Grombacher T, Mitra S, Kaina B (1998) Regulation of expression of the DNA repair gene O6-methylguanine-DNA methyltransferase via protein kinase C-mediated signaling. Cancer Res 58:3950–3956

    CAS  PubMed  Google Scholar 

  33. Rolhion C, Penault-Llorca F, Kemeny JL, Kwiatkowski F, Lemaire JJ, Chollet P, Finat-Duclos F, Verrelle P (1999) O(6)-methylguanine-DNA methyltransferase gene (MGMT) expression in human glioblastomas in relation to patient characteristics and p53 accumulation. Int J Cancer 84:416–420

    Article  CAS  PubMed  Google Scholar 

  34. Bocangel D, Sengupta S, Mitra S, Bhakat KK (2009) p53-Mediated down-regulation of the human DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) via interaction with Sp1 transcription factor. Anticancer Res 29:3741–3750

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Weiler M, Blaes J, Pusch S, Sahm F, Czabanka M, Luger S, Bunse L, Solecki G, Eichwald V, Jugold M, Hodecker S, Osswald M, Meisner C, Hielscher T, Rubmann P, Pfenning PN, Ronellenfitsch M, Kempf T, Schnolzer M, Abdollahi A, Lang F, Bendszus M, von Deimling A, Winkler F, Weller M, Vajkoczy P, Platten M, Wick W (2014) mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy. Proc Natl Acad Sci USA 111:409–414. doi:10.1073/pnas.1314469111

    Article  CAS  PubMed  Google Scholar 

  36. Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE, Brown PO (2009) Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol 7:e1000238. doi:10.1371/journal.pbio.1000238

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tan S, Li R, Ding K, Lobie PE, Zhu T (2011) miR-198 inhibits migration and invasion of hepatocellular carcinoma cells by targeting the HGF/c-MET pathway. FEBS Lett 585:2229–2234. doi:10.1016/j.febslet.2011.05.042

    Article  CAS  PubMed  Google Scholar 

  38. Wang J, Dan G, Shangguan T, Hao H, Tang R, Peng K, Zhao J, Sun H, Zou Z (2015) miR-198 represses the proliferation of HaCaT cells by targeting cyclin D2. Int J Mol Sci 16:17018–17028. doi:10.3390/ijms160817018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sundaram GM, Common JE, Gopal FE, Srikanta S, Lakshman K, Lunny DP, Lim TC, Tanavde V, Lane EB, Sampath P (2013) ‘See-saw’ expression of microRNA-198 and FSTL1 from a single transcript in wound healing. Nature 495:103–106. doi:10.1038/nature11890

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (81472362). The National Key Research and Development Plan (No. 2016YFC0902500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping You.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Animal experiments were approved by the Animal Management Rule of the Chinese Ministry of Health (documentation 55, 2001) and were in accordance with the approved guidelines and the experimental protocol of The First Affiliated Hospital of Nanjing Medical University (Nanjing, China).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, E., Jin, X., Wu, W. et al. MiR-198 enhances temozolomide sensitivity in glioblastoma by targeting MGMT. J Neurooncol 133, 59–68 (2017). https://doi.org/10.1007/s11060-017-2425-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2425-9

Keywords

Navigation