Advertisement

Journal of Neuro-Oncology

, Volume 133, Issue 1, pp 47–57 | Cite as

Expression and function of ABCG2 and XIAP in glioblastomas

  • Ivette F. Emery
  • Archana Gopalan
  • Stephanie Wood
  • Kin-hoe Chow
  • Chiara Battelli
  • Joshy George
  • Hagen Blaszyk
  • Jeffrey Florman
  • Kyuson Yun
Laboratory Investigation

Abstract

Despite multimodal treatment that includes surgery, radiation and chemotherapy, virtually all glioblastomas (GBM) recur, indicating that these interventions are insufficient to eradicate all malignant cells. To identify potential new therapeutic targets in GBMs, we examined the expression and function of proteins that are associated with therapy resistance and cancer cell survival. We measured the expression of eight such proteins in 50 GBM samples by immunohistochemistry and analyzed patient survival. We report that GBM patients with high expression of ABCG2 (also called BCRP) or XIAP at the protein level had worse survival than those with low expression. The adjusted hazard ratio for ABCG2 was 2.35 and for XIAP was 2.65. Since glioma stem cells (GSCs) have been shown to be more resistant than bulk tumor cells to anti-cancer therapies and to express high levels of these proteins, we also sought to determine if ABCG2 and XIAP have functional roles in GSCs. We used small molecule inhibitors to treat patient-derived GBM tumorspheres in vitro and observed that inhibitors of ABCG2, Ko143 and fumitremorgin, significantly reduced self-renewal. These results suggest that ABCG2 and XIAP proteins may be useful indicators of patient survival and that inhibition of ABCG2 may be a promising therapeutic strategy in GBMs.

Keywords

Glioblastoma ABCG2 XIAP Ko143 Glioma stem cells 

Notes

Acknowledgements

We thank Dr. Lee Lucas for her guidance with the statistical methods and Drs. Tom Gridley, Wendy Craig and Christine Lu-Emerson for their critical review of the manuscript. We also thank Jesse Hammer at the Jackson Laboratory’s Multimedia Department for his expert assistance in preparing the figures. We would like to acknowledge the Maine Medical Center BioBank, for their assistance in procuring biospecimens in accordance with IRB guidelines, and the Maine Medical Center Histology Core Facility (Grants P30GM103392 (R. Friesel, P.I.) and P30GM106391 (D. Wojchowski, P.I.), by the National Institute of General Medical Sciences) for their assistance with the immunohistochemistry staining.

Funding

This work was funded by unrestricted research grants from the Maine Medical Center Neuroscience Institute, the Northern New England Clinical Oncology Society, and the Schering-Plough Corporation (Grant ID XX-3903) to IFE and CB. This work was also supported by the Oliver S. and Jennie R. Donaldson Charitable Trust grant to KY. These sponsors had no involvement in study design, data collection, analysis or interpretation, manuscript writing, or the decision to submit the article for publication.

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest beyond the direct research support detailed above.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Maine Medical Center Institutional Review Board and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

11060_2017_2422_MOESM1_ESM.pdf (162 kb)
Supplementary material 1 (PDF 162 KB)
11060_2017_2422_MOESM2_ESM.pdf (154 kb)
Supplementary material 2 (PDF 154 KB)
11060_2017_2422_MOESM3_ESM.pdf (303 kb)
Supplementary material 3 (PDF 303 KB)
11060_2017_2422_MOESM4_ESM.pdf (211 kb)
Supplementary material 4 (PDF 210 KB)

References

  1. 1.
    Johnson DR, O’Neill BP (2012) Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol 107:359–364. doi: 10.1007/s11060-011-0749-4 CrossRefPubMedGoogle Scholar
  2. 2.
    Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell stem Cell 10:717–728. doi: 10.1016/j.stem.2012.05.007 CrossRefPubMedGoogle Scholar
  3. 3.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401CrossRefPubMedGoogle Scholar
  4. 4.
    Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133 + cancer stem cells in glioblastoma. Mol Cancer 5:67CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760CrossRefPubMedGoogle Scholar
  6. 6.
    Hambardzumyan D, Becher OJ, Holland EC (2008) Cancer stem cells and survival pathways. Cell Cycle 7:1371–1378CrossRefPubMedGoogle Scholar
  7. 7.
    Chen J, Li Y, Yu T-S, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526. doi: 10.1038/nature11287 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233. doi: 10.1073/pnas.04000671010400067101 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Vellanki SH, Grabrucker A, Liebau S, Proepper C, Eramo A, Braun V, Boeckers T, Debatin KM, Fulda S (2009) Small-molecule XIAP inhibitors enhance gamma-irradiation-induced apoptosis in glioblastoma. Neoplasia 11:743–752CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Noguchi K, Katayama K, Sugimoto Y (2014) Human ABC transporter ABCG2/BCRP expression in chemoresistance: basic and clinical perspectives for molecular cancer therapeutics. Pharmgenomics Pers Med 7:53–64. doi: 10.2147/PGPM.S38295 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Ricci JW, Lovato D, Larson RS (2015) ABCG2 Inhibitors: will they find clinical relevance? J Develop Drugs 4 doi: 10.4172/2329-6631.1000138 Google Scholar
  12. 12.
    Morfouace M, Cheepala S, Jackson S, Fukuda Y, Patel YT, Fatima S, Kawauchi D, Shelat AA, Stewart CF, Sorrentino BP, Schuetz JD, Roussel MF (2015) ABCG2 transporter expression impacts group 3 medulloblastoma response to chemotherapy. Cancer Res 75:3879–3889. doi: 10.1158/0008-5472.CAN-15-0030 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Robey RW, Ierano C, Zhan Z, Bates SE (2011) The challenge of exploiting ABCG2 in the clinic. Curr Pharm Biotechnol 12:595–608CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284. doi: 10.1038/nrc1590 CrossRefPubMedGoogle Scholar
  15. 15.
    Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034CrossRefPubMedGoogle Scholar
  16. 16.
    Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337–1345CrossRefPubMedGoogle Scholar
  17. 17.
    Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806CrossRefPubMedGoogle Scholar
  18. 18.
    Harris MA, Yang H, Low BE, Mukherje J, Guha A, Bronson RT, Shultz LD, Israel MA, Yun K (2008) Cancer stem cells are enriched in the side population cells in a mouse model of glioma. Cancer Res 68:10051–10059. doi: 10.1158/0008-5472.CAN-08-0786 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell stem Cell 4:226–235. doi: 10.1016/j.stem.2009.01.007 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lee FA, Zee BC, Cheung FY, Kwong P, Chiang CL, Leung KC, Siu SW, Lee C, Lai M, Kwok C, Chong M, Jolivet J, Tung S (2014) Randomized phase II study of the X-linked inhibitor of apoptosis (XIAP) antisense AEG35156 in combination with sorafenib in patients with advanced hepatocellular carcinoma (HCC). Am J Clin Oncol. doi: 10.1097/COC.0000000000000099 PubMedCentralGoogle Scholar
  21. 21.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003. doi: 10.1056/NEJMoa043331 CrossRefPubMedGoogle Scholar
  22. 22.
    Suzuki Y, Shirai K, Oka K, Mobaraki A, Yoshida Y, Noda SE, Okamoto M, Suzuki Y, Itoh J, Itoh H, Ishiuchi S, Nakano T (2010) Higher pAkt expression predicts a significant worse prognosis in glioblastomas. J Radiat Res 51:343–348CrossRefPubMedGoogle Scholar
  23. 23.
    Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, Reid G, Schellens JH, Koomen GJ, Schinkel AH (2002) Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 1:417–425CrossRefPubMedGoogle Scholar
  24. 24.
    Nikolovska-Coleska Z, Xu L, Hu Z, Tomita Y, Li P, Roller PP, Wang R, Fang X, Guo R, Zhang M, Lippman ME, Yang D, Wang S (2004) Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J Med Chem 47: 2430–2440. doi: 10.1021/jm030420+ CrossRefPubMedGoogle Scholar
  25. 25.
    Shi L, Wang Z, Sun G, Wan Y, Guo J, Fu X (2014) miR-145 inhibits migration and invasion of glioma stem cells by targeting ABCG2. Neuromolecular Med 16:517–528. doi: 10.1007/s12017-014-8305-y CrossRefPubMedGoogle Scholar
  26. 26.
    Ogura J, Kobayashi M, Itagaki S, Hirano T, Iseki K (2008) Post-transcriptional regulation of breast cancer resistance protein after intestinal ischemia-reperfusion. Biol Pharm Bull 31:1032–1035CrossRefPubMedGoogle Scholar
  27. 27.
    Sandor S, Jordanidisz T, Schamberger A, Varady G, Erdei Z, Apati A, Sarkadi B, Orban TI (2016) Functional characterization of the ABCG2 5′ non-coding exon variants: stem cell specificity, translation efficiency and the influence of drug selection. Biochim Biophys Acta 1859:943–951. doi: 10.1016/j.bbagrm.2016.05.007 CrossRefPubMedGoogle Scholar
  28. 28.
    Harwood MD, Neuhoff S, Rostami-Hodjegan A, Warhurst G (2016) Breast cancer resistance protein abundance, but not mRNA expression, correlates with estrone-3-sulfate transport in caco-2. J Pharm Sci 105:1370–1375. doi: 10.1016/j.xphs.2016.01.018 CrossRefPubMedGoogle Scholar
  29. 29.
    Krishnamurthy P, Schuetz JD (2006) Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol 46:381–410. doi: 10.1146/annurev.pharmtox.46.120604.141238 CrossRefPubMedGoogle Scholar
  30. 30.
    Kuppens IE, Witteveen EO, Jewell RC, Radema SA, Paul EM, Mangum SG, Beijnen JH, Voest EE, Schellens JH (2007) A phase I, randomized, open-label, parallel-cohort, dose-finding study of elacridar (GF120918) and oral topotecan in cancer patients. Clin Cancer Res 13:3276–3285. doi: 10.1158/1078-0432.CCR-06-2414 CrossRefPubMedGoogle Scholar
  31. 31.
    Kruijtzer CM, Beijnen JH, Rosing H, ten Bokkel Huinink WW, Schot M, Jewell RC, Paul EM, Schellens JH (2002) Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J Clin Oncol 20:2943–2950CrossRefPubMedGoogle Scholar
  32. 32.
    Lagas JS, van Waterschoot RA, van Tilburg VA, Hillebrand MJ, Lankheet N, Rosing H, Beijnen JH, Schinkel AH (2009) Brain accumulation of dasatinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by elacridar treatment. Clin Cancer Res 15:2344–2351. doi: 10.1158/1078-0432.CCR-08-2253 CrossRefPubMedGoogle Scholar
  33. 33.
    Bleau AM, Huse JT, Holland EC (2009) The ABCG2 resistance network of glioblastoma. Cell Cycle 8:2936–2944CrossRefPubMedGoogle Scholar
  34. 34.
    Bhattacharya S, Das A, Mallya K, Ahmad I (2007) Maintenance of retinal stem cells by Abcg2 is regulated by notch signaling. J Cell Sci 120:2652–2662. doi: 10.1242/jcs.008417 CrossRefPubMedGoogle Scholar
  35. 35.
    Wang Z, Li Y, Banerjee S, Sarkar FH (2009) Emerging role of Notch in stem cells and cancer. Cancer Lett 279:8–12. doi: 10.1016/j.canlet.2008.09.030 CrossRefPubMedGoogle Scholar
  36. 36.
    Samant MD, Jackson CM, Felix CL, Jones AJ, Goodrich DW, Foster BA, Huss WJ (2015) Multi-drug resistance ABC transporter inhibition enhances murine ventral prostate stem/progenitor cell differentiation. Stem Cells Dev 24:1236–1251. doi: 10.1089/scd.2014.0293 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Maine Medical Center Research InstituteScarboroughUSA
  2. 2.The Jackson LaboratoryBar HarborUSA
  3. 3.New England Cancer SpecialistsScarboroughUSA
  4. 4.The Jackson Laboratory for Genomic MedicineFarmingtonUSA
  5. 5.Maine Medical Center Department of PathologyPortlandUSA
  6. 6.Maine Medical Center Neuroscience InstitutePortlandUSA
  7. 7.Peak Center for Brain and Pituitary TumorsHouston Methodist Research InstituteHoustonUSA

Personalised recommendations