Skip to main content

Advertisement

Log in

Radiogenomics of lower-grade glioma: algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi-institutional study with The Cancer Genome Atlas data

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Recent studies identified distinct genomic subtypes of lower-grade gliomas that could potentially be used to guide patient treatment. This study aims to determine whether there is an association between genomics of lower-grade glioma tumors and patient outcomes using algorithmic measurements of tumor shape in magnetic resonance imaging (MRI). We analyzed preoperative imaging and genomic subtype data from 110 patients with lower-grade gliomas (WHO grade II and III) from The Cancer Genome Atlas. Computer algorithms were applied to analyze the imaging data and provided five quantitative measurements of tumor shape in two and three dimensions. Genomic data for the analyzed cohort of patients consisted of previously identified genomic clusters based on IDH mutation and 1p/19q co-deletion, DNA methylation, gene expression, DNA copy number, and microRNA expression. Patient outcomes were quantified by overall survival. We found that there is a strong association between angular standard deviation (ASD), which measures irregularity of the tumor boundary, and the IDH-1p/19q subtype (p < 0.0017), RNASeq cluster (p < 0.0002), DNA copy number cluster (p < 0.001), and the cluster of clusters (p < 0.0002). The RNASeq cluster was also associated with bounding ellipsoid volume ratio (p < 0.0005). Tumors in the IDH wild type cluster and R2 RNASeq cluster which are associated with much poorer outcomes generally had higher ASD reflecting more irregular shape. ASD also showed association with patient overall survival (p = 0.006). Shape features in MRI were strongly associated with genomic subtypes and patient outcomes in lower-grade glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372(26):2481–2498

    Article  CAS  PubMed  Google Scholar 

  2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lang FF, Gilbert MR (2006) Diffusely infiltrative low-grade gliomas in adults. J Clin Oncol 24(8):1236–1245

    Article  CAS  PubMed  Google Scholar 

  4. Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJB et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  5. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372(26):2499–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang C-M, Brat DJ (2016) Genomic profiling of lower-grade gliomas uncovers cohesive disease groups: implications for diagnosis and treatment. Chin J Cancer 35(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tchoghandjian A, Koh MY, Taieb D, Ganaha S, Powis G, Bialecki E et al (2016) Hypoxia-associated factor expression in low-grade and anaplastic gliomas: a marker of poor outcome. Oncotarget. doi:10.18632/oncotarget.8046

    Google Scholar 

  8. Viswanath P, Najac C, Izquierdo-Garcia JL, Pankov A, Hong C, Eriksson P et al (2016) Mutant IDH1 expression is associated with down-regulation of monocarboxylate transporters. Oncotarget. doi:10.18632/oncotarget.8046

    PubMed  PubMed Central  Google Scholar 

  9. Mazurowski MA (2015) Radiogenomics: what it is and why it is important. J Am Coll Radiol 12(8):862–866

  10. Mazurowski MA, Zhang J, Grimm LJ, Yoon SC, Silber JI (2014) Radiogenomic analysis of breast cancer: luminal B molecular subtype is associated with enhancement dynamics at MR imaging. Radiology 273:365–372

    Article  PubMed  Google Scholar 

  11. Grimm LJ, Zhang J, Mazurowski MA (2015) A computational approach to radiogenomics of breast cancer: luminal A and luminal B molecular subtypes are associated with imaging features on routine breast MRI extracted using computer vision algorithms. J Magn Reson Imaging. doi:10.1002/jmri.24879

    PubMed Central  Google Scholar 

  12. Zinn PO, Majadan B, Sathyan P, Singh SK, Majumder S, Jolesz FA et al (2011) Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One 6(10):e25451

    Article  CAS  Google Scholar 

  13. Yamamoto S, Han W, Kim Y, Du L, Jamshidi N, Huang D et al (2015) Breast cancer: radiogenomic biomarker reveals associations among dynamic contrast-enhanced MR imaging, long noncoding RNA, and metastasis. Radiology 275(2):384–392

  14. Yamamoto S, Maki DD, Korn RL, Kuo MD (2012) Radiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscape. Am J Roentgenol 199(3):654–663

    Article  Google Scholar 

  15. Gutman DA, Cooper LA, Hwang SN, Holder CA, Gao J, Aurora TD et al (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267(2):560–569

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ashraf AB, Daye D, Gavenonis S, Mies C, Feldman M, Rosen M et al (2014) Identification of intrinsic imaging phenotypes for breast cancer tumors: preliminary associations with gene expression profiles. Radiology 272(2):374–384

    Article  PubMed  PubMed Central  Google Scholar 

  17. Czarnek NM, Clark K, Peters KB, Collins LM, Mazurowski MA (2016) Radiogenomics of glioblastoma: a pilot multi-institutional study to investigate a relationship between tumor shape features and tumor molecular subtype. SPIE Med Imaging 97850V–97850V

  18. Huse JT, Wallace M, Aldape KD, Berger MS, Bettegowda C, Brat DJ et al (2013) Where are we now? And where are we going? A report from the Accelerate Brain Cancer Cure (ABC2) low-grade glioma research workshop. Neuro Oncol 16(2):173–178

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mazurowski MA, Clark K, Czarnek NM, Shamsesfandabadi P, Peters KB, Saha A (2017) Radiogenomic analysis of lower grade glioma: a pilot multi-institutional study shows an association between quantitative image features and tumor genomics. In: SPIE Medical Imaging Conference. doi:10.1117/12.2255579

  20. Czarnek N, Clark K, Peters KB, Mazurowski MA (2017) Algorithmic three-dimensional analysis of tumor shape in MRI improves prognosis of survival in glioblastoma: a multi-institutional study. J Neurooncol 1–8

  21. Moshtagh N (2005) Minimum volume enclosing ellipsoid. Convex Optim 111:112

    Google Scholar 

  22. Khachiyan LG (1980) Polynomial algorithms in linear programming. USSR Comput Math Math Phys 20(1):53–72

    Article  Google Scholar 

  23. Giger ML, Vyborny CJ, Schmidt RA (1994) Computerized characterization of mammographic masses: analysis of spiculation. Cancer Lett 77(2):201–211

    Article  CAS  PubMed  Google Scholar 

  24. Pohlman S, Powell KA, Obuchowski NA, Chilcote WA, Grundfest-Broniatowski S (1996) Quantitative classification of breast tumors in digitized mammograms. Med Phys 23(8):1337–1345

    Article  CAS  PubMed  Google Scholar 

  25. Georgiou H, Mavroforakis M, Dimitropoulos N, Cavouras D, Theodoridis S (2007) Multi-scaled morphological features for the characterization of mammographic masses using statistical classification schemes. Artif Intell Med 41(1):39–55

    Article  PubMed  Google Scholar 

Download references

Funding

There are no funding sources, which supported this research, to be disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej A. Mazurowski.

Ethics declarations

Conflict of interest

Dr. Katherine B. Peters received research funding from the following companies: Agios, AMGEN, BioMimetix, Eisai, Genentech, Merck, VBL. Dr. Katherine B. Peters is on the Advisory Board of the following companies:Agios, Novocure. Other authors have nothing relevant to disclose.

Ethical approval

This study has been conducted using the publicly available data from The Cancer Genome Atlas (TCGA) and we secured an institutional review board exemption for studying this data at our institution.

Informed consent

This study has been conducted using the publicly available data from The Cancer Genome Atlas (TCGA) and the policies for informed consent of TCGA are available at http://cancergenome.nih.gov/abouttcga/policies/informedconsent and http://cancergenome.nih.gov/pdfs/TCGA_Human_Subjects_Protection_and_Data_Access_Policies_Rev_2014-01-16.pdf.

Appendix 1

Appendix 1

Full list of the 110 patient IDs used in this study (comma-separated):

TCGA-CS-4941, TCGA-CS-4942, TCGA-CS-4943, TCGA-CS-4944, TCGA-CS-5393, TCGA-CS-5395, TCGA-CS-5396, TCGA-CS-5397, TCGA-CS-6186, TCGA-CS-6188, TCGA-CS-6290, TCGA-CS-6665, TCGA-CS-6666, TCGA-CS-6667, TCGA-CS-6668, TCGA-CS-6669, TCGA-DU-5849, TCGA-DU-5851, TCGA-DU-5852, TCGA-DU-5853, TCGA-DU-5854, TCGA-DU-5855, TCGA-DU-5871, TCGA-DU-5872, TCGA-DU-5874, TCGA-DU-6399, TCGA-DU-6400, TCGA-DU-6401, TCGA-DU-6404, TCGA-DU-6405, TCGA-DU-6407, TCGA-DU-6408, TCGA-DU-7008, TCGA-DU-7010, TCGA-DU-7013, TCGA-DU-7014, TCGA-DU-7018, TCGA-DU-7019, TCGA-DU-7294, TCGA-DU-7298, TCGA-DU-7299, TCGA-DU-7300, TCGA-DU-7301, TCGA-DU-7302, TCGA-DU-7304, TCGA-DU-7306, TCGA-DU-7309, TCGA-DU-8162, TCGA-DU-8163, TCGA-DU-8164, TCGA-DU-8165, TCGA-DU-8166, TCGA-DU-8167, TCGA-DU-8168, TCGA-DU-A5TP, TCGA-DU-A5TR, TCGA-DU-A5TS, TCGA-DU-A5TT, TCGA-DU-A5TU, TCGA-DU-A5TW, TCGA-DU-A5TY, TCGA-EZ-7264, TCGA-FG-5962, TCGA-FG-5964, TCGA-FG-6688, TCGA-FG-6689, TCGA-FG-6690, TCGA-FG-6691, TCGA-FG-6692, TCGA-FG-7634, TCGA-FG-7637, TCGA-FG-7643, TCGA-FG-8189, TCGA-FG-A4MT, TCGA-FG-A4MU, TCGA-FG-A60K, TCGA-HT-7473, TCGA-HT-7475, TCGA-HT-7602, TCGA-HT-7605, TCGA-HT-7608, TCGA-HT-7616, TCGA-HT-7680, TCGA-HT-7684, TCGA-HT-7686, TCGA-HT-7690, TCGA-HT-7692, TCGA-HT-7693, TCGA-HT-7694, TCGA-HT-7855, TCGA-HT-7856, TCGA-HT-7860, TCGA-HT-7874, TCGA-HT-7877, TCGA-HT-7879, TCGA-HT-7881, TCGA-HT-7882, TCGA-HT-7884, TCGA-HT-8018, TCGA-HT-8105, TCGA-HT-8106, TCGA-HT-8107, TCGA-HT-8111, TCGA-HT-8113, TCGA-HT-8114, TCGA-HT-8563, TCGA-HT-A5RC, TCGA-HT-A616, TCGA-HT-A61A, TCGA-HT-A61B.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazurowski, M.A., Clark, K., Czarnek, N.M. et al. Radiogenomics of lower-grade glioma: algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi-institutional study with The Cancer Genome Atlas data. J Neurooncol 133, 27–35 (2017). https://doi.org/10.1007/s11060-017-2420-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2420-1

Keywords

Navigation