Skip to main content

Advertisement

Log in

SMAD dependent signaling plays a detrimental role in a fly model of SMARCB1-deficiency and the biology of atypical teratoid/rhabdoid tumors

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Atypical teratoid/rhabdoid tumors (ATRT) are highly malignant brain tumors arising in young children. The majority of ATRT is characterized by inactivation of the chromatin remodeling complex member SMARCB1 (INI1/hSNF5). Little is known, however, on downstream pathways involved in the detrimental effects of SMARCB1 deficiency which might also represent targets for treatment. Using Drosophila melanogaster and the Gal4-UAS system, modifier screens were performed in order to identify the role of SMAD dependent signaling in the lethal phenotype associated with knockdown of snr1, the fly homolog of SMARCB1. Expression and functional role of human homologs was next investigated in ATRT tumor samples and SMARCB1-deficient rhabdoid tumor cells. The lethal phenotype associated with snr1 knockdown in Drosophila melanogaster could be shifted to later stages of development upon additional knockdown of several decapentaplegic pathway members including Smox, and Med. Similarly, the transforming growth factor beta (TGFbeta) receptor type I kinase inhibitor SB431542 ameliorated the detrimental effect of snr1 knockdown in the fruit fly. Examination of homologs of candidate decapentaplegic pathway members in human SMARCB1-deficent ATRT samples revealed SMAD3 and SMAD6 to be over-expressed. In SMARCB1-deficent rhabdoid tumor cells, siRNA-mediated silencing of SMAD3 or SMAD6 expression reduced TGFbeta signaling activity and resulted in decreased proliferation. Similar results were obtained upon pharmacological inhibition of TGFbeta signaling using SB431542. Our data suggest that SMAD dependent signaling is involved in the detrimental effects of SMARCB1-deficiency and provide a rationale for the investigation of TGFbeta targeted treatments in ATRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Frühwald MC, Biegel JA, Bourdeaut F, Roberts CW, Chi SN (2016) Atypical teratoid/rhabdoid tumors-current concepts, advances in biology, and potential future therapies. Neurooncol 18:764–778

    Google Scholar 

  2. Lee RS, Stewart C, Carter SL, Ambrogio L, Cibulskis K, Sougnez C, Lawrence MS, Auclair D, Mora J, Golub TR, Biegel JA, Getz G, Roberts CW (2012) A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J Clin Invest 122:2983–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hasselblatt M, Isken S, Linge A, Eikmeier K, Jeibmann A, Oyen F, Nagel I, Richter J, Bartelheim K, Kordes U, Schneppenheim R, Frühwald M, Siebert R, Paulus W (2013) High-resolution genomic analysis suggests the absence of recurrent genomic alterations other than SMARCB1 aberrations in atypical teratoid/rhabdoid tumors. Genes Chromosomes Cancer 52:185–190

    Article  CAS  PubMed  Google Scholar 

  4. Chi SN, Zimmerman MA, Yao X, Cohen KJ, Burger P, Biegel JA, Rorke-Adams LB, Fisher MJ, Janss A, Mazewski C, Goldman S, Manley PE, Bowers DC, Bendel A, Rubin J, Turner CD, Marcus KJ, Goumnerova L, Ullrich NJ, Kieran MW (2009) Intensive multimodality treatment for children with newly diagnosed CNS atypical teratoid rhabdoid tumor. J Clin Oncol 27: 385–389

    Article  PubMed  PubMed Central  Google Scholar 

  5. Benesch M, Bartelheim K, Fleischhack G, Gruhn B, Schlegel PG, Witt O, Stachel KD, Hauch H, Urban C, Quehenberger F, Massimino M, Pietsch T, Hasselblatt M, Giangaspero F, Kordes U, Schneppenheim R, Hauser P, Klingebiel T, Frühwald MC (2014) High-dose chemotherapy (HDCT) with auto-SCT in children with atypical teratoid/rhabdoid tumors (AT/RT): a report from the European Rhabdoid Registry (EU-RHAB). Bone Marrow Transpl 49: 370–375

    Article  CAS  Google Scholar 

  6. Gold LI (1999) The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncog 10:303–360

    CAS  PubMed  Google Scholar 

  7. Joseph JV, Balasubramaniyan V, Walenkamp A, Kruyt FA (2013) TGF-beta as a therapeutic target in high grade gliomas - promises and challenges. Biochem Pharmacol 85:478–485

    Article  CAS  PubMed  Google Scholar 

  8. Lin CY, Erkek S, Tong Y, Yin L, Federation AJ, Zapatka M, Haldipur P, Kawauchi D, Risch T, Warnatz HJ, Worst BC, Ju B, Orr BA, Zeid R, Polaski DR, Segura-Wang M, Waszak SM, Jones DT, Kool M, Hovestadt V, Buchhalter I, Sieber L, Johann P, Chavez L, Groschel S, Ryzhova M, Korshunov A, Chen W, Chizhikov VV, Millen KJ, Amstislavskiy V, Lehrach H, Yaspo ML, Eils R, Lichter P, Korbel JO, Pfister SM, Bradner JE, Northcott PA (2016) Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature 530:57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heldin CH, Moustakas A (2012) Role of smads in TGFbeta signaling. Cell Tissue Res 347:21–36

    Article  CAS  PubMed  Google Scholar 

  10. Massague J (2012) TGFbeta signalling in context. Nat Rev Mol Cell Biol 13:616–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ross S, Cheung E, Petrakis TG, Howell M, Kraus WL, Hill CS (2006) Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription. EMBO J 25:4490–4502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jeibmann A, Eikmeier K, Linge A, Kool M, Koos B, Schulz J, Albrecht S, Bartelheim K, Frühwald MC, Pfister SM, Paulus W, Hasselblatt M (2014) Identification of genes involved in the biology of atypical teratoid/rhabdoid tumours using Drosophila melanogaster. Nat Commun 5:4005

    Article  CAS  PubMed  Google Scholar 

  13. Johann PD, Erkek S, Zapatka M, Kerl K, Buchhalter I, Hovestadt V, Jones DTW, Sturm D, Hermann C, Wang MS, Korshunov A, Ryzhova M, Bens S, Groeschel S, Kratochwil F, Wittmann A, Sieber L, Georg C, Wolf S, Beck K, Oyen F, Capper D, Van Sluis P, Volckmann R, Koster J, Versteegen GJ, Von Deimling A, Milde T, Witt O, Kulozik A, Ebinger M, Shalaby T, Grotzer MA, Sumerauer D, Mora J, Jabado N, Taylor MD, Huang A, Aronica E, Bertoni A, Radlwimmer B, Pietsch T, Schuller U, Schneppenheim R, Northcott P, Siebert R, Frühwald M, Lichter P, Eils R, Gajjar A, Hasselblatt M, Pfister SM, Kool M (2016) Atypical teratoid / rhabdoid tumor (ATRT) comprises three epigenetic subgroups with distinct enhancer landscapes. Cancer Cell 29: 379–393

    Article  CAS  PubMed  Google Scholar 

  14. Torchia J, Picard D, Lafay-Cousin L, Hawkins CE, Kim SK, Letourneau L, Ra YS, Ho KC, Chan TS, Sin-Chan P, Dunham CP, Yip S, Ng HK, Lu JQ, Albrecht S, Pimentel J, Chan JA, Somers GR, Zielenska M, Faria CC, Roque L, Baskin B, Birks D, Foreman N, Strother D, Klekner A, Garami M, Hauser P, Hortobagyi T, Bognar L, Wilson B, Hukin J, Carret AS, Van Meter TE, Nakamura H, Toledano H, Fried I, Fults D, Wataya T, Fryer C, Eisenstat DD, Scheineman K, Johnston D, Michaud J, Zelcer S, Hammond R, Ramsay DA, Fleming AJ, Lulla RR, Fangusaro JR, Sirachainan N, Larbcharoensub N, Hongeng S, Barakzai MA, Montpetit A, Stephens D, Grundy RG, Schuller U, Nicolaides T, Tihan T, Phillips J, Taylor MD, Rutka JT, Dirks P, Bader GD, Warmuth-Metz M, Rutkowski S, Pietsch T, Judkins AR, Jabado N, Bouffet E, Huang A (2015) Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysis. Lancet Oncol 16: 569–582

    Article  CAS  PubMed  Google Scholar 

  15. Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P, Troost D, Meeteren NS, Caron HN, Cloos J, Mrsic A, Ylstra B, Grajkowska W, Hartmann W, Pietsch T, Ellison D, Clifford SC, Versteeg R (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 3:e3088

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fattet S, Haberler C, Legoix P, Varlet P, Lellouch-Tubiana A, Lair S, Manie E, Raquin MA, Bours D, Carpentier S, Barillot E, Grill J, Doz F, Puget S, Janoueix-Lerosey I, Delattre O (2009) Beta-catenin status in paediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. J Pathol 218: 86–94

    Article  CAS  PubMed  Google Scholar 

  17. Roth RB, Hevezi P, Lee J, Willhite D, Lechner SM, Foster AC, Zlotnik A (2006) Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Neurogenetics 7:67–80

    Article  CAS  PubMed  Google Scholar 

  18. Birks DK, Donson AM, Patel PR, Dunham C, Muscat A, Algar EM, Ashley DM, Kleinschmidt-Demasters BK, Vibhakar R, Handler MH, Foreman NK (2011) High expression of BMP pathway genes distinguishes a subset of atypical teratoid/rhabdoid tumors associated with shorter survival. Neurooncol 13:1296–1307

    Google Scholar 

  19. Rushlow C, Colosimo PF, Lin MC, Xu M, Kirov N (2001) Transcriptional regulation of the Drosophila gene zen by competing smad and brinker inputs. Genes Dev 15:340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barrio R, de Celis JF (2004) Regulation of spalt expression in the Drosophila wing blade in response to the decapentaplegic signaling pathway. Proc Natl Acad Sci USA 101:6021–6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hodar C, Zuniga A, Pulgar R, Travisany D, Chacon C, Pino M, Maass A, Cambiazo V (2014) Comparative gene expression analysis of Dtg, a novel target gene of Dpp signaling pathway in the early Drosophila melanogaster embryo. Gene 535: 210–217

    Article  CAS  PubMed  Google Scholar 

  22. Inoue H, Imamura T, Ishidou Y, Takase M, Udagawa Y, Oka Y, Tsuneizumi K, Tabata T, Miyazono K, Kawabata M (1998) Interplay of signal mediators of decapentaplegic (Dpp): molecular characterization of mothers against dpp, Medea, and daughters against dpp. Mol Biol Cell 9:2145–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Laping NJ, Grygielko E, Mathur A, Butter S, Bomberger J, Tweed C, Martin W, Fornwald J, Lehr R, Harling J, Gaster L, Callahan JF, Olson BA (2002) Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol Pharmacol 62:58–64

    Article  CAS  PubMed  Google Scholar 

  24. Massague J (2008) TGFbeta in Cancer. Cell 134:215–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aref D, Moffatt CJ, Agnihotri S, Ramaswamy V, Dubuc AM, Northcott PA, Taylor MD, Perry A, Olson JM, Eberhart CG, Croul SE (2013) Canonical TGF-beta pathway activity is a predictor of SHH-driven medulloblastoma survival and delineates putative precursors in cerebellar development. Brain Pathol 23:178–191

    Article  CAS  PubMed  Google Scholar 

  26. Lyko F, Ramsahoye BH, Jaenisch R (2000) DNA methylation in Drosophila melanogaster. Nature 408:538–540

    Article  CAS  PubMed  Google Scholar 

  27. Miyazono K, Kamiya Y, Morikawa M (2010) Bone morphogenetic protein receptors and signal transduction. J Biochem 147:35–51

    Article  CAS  PubMed  Google Scholar 

  28. Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65–74

    Article  CAS  PubMed  Google Scholar 

  29. Jeon HS, Dracheva T, Yang SH, Meerzaman D, Fukuoka J, Shakoori A, Shilo K, Travis WD, Jen J (2008) SMAD6 contributes to patient survival in non-small cell lung cancer and its knockdown reestablishes TGF-beta homeostasis in lung cancer cells. Cancer Res 68:9686–9692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Medina PP, Romero OA, Kohno T, Montuenga LM, Pio R, Yokota J, Sanchez-Cespedes M (2008) Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum Mutat 29:617–622

    Article  CAS  PubMed  Google Scholar 

  31. Geng H, Lan R, Wang G, Siddiqi AR, Naski MC, Brooks AI, Barnes JL, Saikumar P, Weinberg JM, Venkatachalam MA (2009) Inhibition of autoregulated TGFbeta signaling simultaneously enhances proliferation and differentiation of kidney epithelium and promotes repair following renal ischemia. Am J Pathol 174:1291–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Interdisziplinäres Zentrum für Klinische Forschung (IZKF) Münster (Ha3/019/15), Deutsche Forschungsgemeinschaft (Pa 328/7) and Deutsche Krebshilfe (110266). The EU-RHAB registry is supported by Deutsche Kinderkrebsstiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hasselblatt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1597 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeibmann, A., Schulz, J., Eikmeier, K. et al. SMAD dependent signaling plays a detrimental role in a fly model of SMARCB1-deficiency and the biology of atypical teratoid/rhabdoid tumors. J Neurooncol 131, 477–484 (2017). https://doi.org/10.1007/s11060-016-2326-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2326-3

Keywords

Navigation