Skip to main content

Advertisement

Log in

Evaluation of chromosome 1q gain in intracranial ependymomas

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Ependymomas are relatively uncommon gliomas with poor prognosis despite recent advances in neurooncology. Molecular pathogenesis of ependymomas is not extensively studied. Lack of correlation of histological grade with patient outcome has directed attention towards identification of molecular alterations as novel prognostic markers. Recently, 1q gain has emerged as a potential prognostic marker, associated with decreased survival, especially in posterior fossa, high grade tumors. Cases of intracranial ependymomas were retrieved. Tumors were graded using objective criteria to supplement WHO grading. Fluorescence in situ hybridization for 1q gain was performed on formalin-fixed paraffin embedded sections. Eighty-one intracranial ependymomas were analyzed. Pediatric (76 %) and infratentorial (70 %) ependymomas constituted the majority. 1q gain was seen in 27 cases (33 %), was equally frequent in children (34 %) and adults (32 %), supratentorial (37 %) and infratentorial (32 %) location, grade II (33 %) and III (25 %) tumors. Recurrence was noted in 24 cases and death in 7 cases with 5-year progression-free and overall-survival rates of 37 % and 80 %, respectively. Grade II tumors had a better survival than grade III tumors; histopathological grade was the only prognostically significant marker. 1q gain had no prognostic significance. 1q gain is frequent in ependymomas in Indian patients, seen across all ages, sites and grades, and thus is likely an early event in pathogenesis. The prognostic value of 1q gain, remains uncertain, and multicentric pooling of data is required. A histopathological grading system using objective criteria correlates well with patient outcome and can serve as an economical option for prognostication of ependymomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bouffet E, Perilongo G, Cavete A et al (1998) A critical review of prognostic factors and a plea for cooperation. Med Pediatr Oncol 30:319–329

    Article  CAS  PubMed  Google Scholar 

  2. Robertson PL, Zeltzer PM, Boyett JM et al (1998) Survival and prognostic factors following radiation therapy and chemotherapy for ependymomas in children: a report of the Children’s Cancer Group. J Neurosurg 88:695–703

    Article  CAS  PubMed  Google Scholar 

  3. Sala F, Talacchi A, Mazza C et al (1998) Prognostic factors in childhood intracranial ependymomas: the role of age and tumour location. Pediatr Neurosurg 28:135–142

    Article  CAS  PubMed  Google Scholar 

  4. Zamecnik J, Snuderl M, Eckschlager T et al (2003) Paediatric intracranial ependymomas: prognostic relevance of histological, immunohistochemical, and flow cytometric factors. Mod Pathol 16:980–991

    Article  PubMed  Google Scholar 

  5. Krieger MD, Bowen IE (2005) Effects of surgical resection and adjuvant therapy on pediatric intracranial ependymomas. Expert Rev Neurother 5:465–471

    Article  PubMed  Google Scholar 

  6. Rudà R, Gilbert M, Soffietti R (2008) Ependymomas of the adult: molecular biology and treatment. Curr Opin Neurol 21:754–761

    Article  PubMed  Google Scholar 

  7. Tihan T, Zhou T, Holmes E, Burger PC, Ozuysal S, Rushing EJ (2008) The prognostic value of histological grading of posterior fossa ependymomas in children: a Children’s Oncology Group study and a review of prognostic factors. Mod Pathol 21:165–177

    PubMed  Google Scholar 

  8. Ernestus RI, Schröder R, Stützer H, Klug N (1997) The clinical and prognostic relevance of grading in intracranial ependymomas. Br J Neurosurg 11:421–428

    Article  CAS  PubMed  Google Scholar 

  9. McLaughlin MP, Marcus RB Jr, Buatti JM et al (1998) Ependymoma: results, prognostic factors and treatment recommendations. Int J Radiat Oncol Biol Phys 40:845–850

    Article  CAS  PubMed  Google Scholar 

  10. Figarella-Branger D, Civatte M, Bouvier-Labit C et al (2000) Prognostic factors in intracranial ependymomas in children. J Neurosurg 93:605–613

    Article  CAS  PubMed  Google Scholar 

  11. Korshunov A, Golanov A, Sycheva R et al (2004) The histological grade is a main prognostic factor for patients with intracranial ependymomas treated in the microneurosurgical era: an analysis of 258 patients. Cancer 100:1230–1237

    Article  PubMed  Google Scholar 

  12. Wolfsberger S, Fischer I, Höftberger R et al (2004) Ki-67 immunolabeling index is an accurate predictor of outcome in patients with intracranial ependymoma. Am J Surg Pathol 28:914–920

    Article  PubMed  Google Scholar 

  13. Kawabata Y, Takahashi JA, Arakawa Y, Hashimoto N (2005) Long-term outcome in patients harboring intracranial ependymoma. J Neurosurg 103:31–37

    Article  PubMed  Google Scholar 

  14. Kurt E, Zheng PP, Hop WC et al (2006) Identification of relevant prognostic histopathologic features in 69 intracranial ependymomas, excluding myxopapillary ependymomas and subependymomas. Cancer 106:388–395

    Article  PubMed  Google Scholar 

  15. Metellus P, Barrie M, Figarella Branger D et al (2007) Multicentric French study on adult intracranial ependymomas; prognostic factor analysis and therapeutic consideration from a cohort of 152 patients. Brain 130:1338–1349

    Article  PubMed  Google Scholar 

  16. Sutton LN, Goldwein J, Perilongo G et al (1990) Prognostic factors in childhood ependymomas. Pediatr Neurosurg 16:57–65

    Article  PubMed  Google Scholar 

  17. Perilongo G, Massimino M, Sotti G et al (1997) Analyses of prognostic factors in a retrospective review of 92 children with ependymoma: Italian Pediatric Neuro-oncology Group. Med Pediatr Oncol 29:79–85

    Article  CAS  PubMed  Google Scholar 

  18. Carter M, Nicholson J, Ross F et al (2002) Genetic abnormalities detected in ependymomas by comparative genomic hybridisation. Br J Cancer 86:929–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mendrzyk F, Korshunov A, Benner A et al (2006) Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma. Clin Cancer Res 12:2070–2079

    Article  CAS  PubMed  Google Scholar 

  20. Korshunov A, Neben K, Wrobel G et al (2003) Gene expression patterns in ependymomas correlate with tumour location, grade, and patient age. Am J Pathol 163:1721–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kilday JP, Rahman R, Dyer S et al (2009) Paediatric ependymoma: biological perspectives. Mol Cancer Res 7:765–786

    Article  CAS  PubMed  Google Scholar 

  22. Yang I, Nagasawa DT, Kim W et al (2012) Chromosomal anomalies and prognostic markers for intracranial and spinal ependymomas. J Clin Neurosci 19:779–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Korshunov A, Witt H, Hielscher T et al (2010) Molecular staging of intracranial ependymoma in children. J Clin Oncol 28:3182–3190

    Article  PubMed  Google Scholar 

  24. Godfraind C, Kaczmarska JM, Kocak M et al (2012) Distinct disease-risk groups in pediatric supratentorial and posterior fossa ependymomas. Acta Neuropathol 124:247–257

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kilday JP, Mitra B, Domerg C et al (2012) Copy number gain of 1q25 predicts poor progression-free survival for pediatric intracranial ependymomas and enables patient risk stratification: a prospective European clinical trial cohort analysis on behalf of the Children’s Cancer Leukaemia Group (CCLG), Societe Francaise d’Oncologie Pediatrique (SFOP) and International Society for Pediatric Oncology (SIOP). Clin Cancer Res 18:2001–2011

    Article  CAS  PubMed  Google Scholar 

  26. Rousseau A, Idbaih A, Ducray F et al (2010) Specific chromosomal imbalances as detected by array CGH in ependymomas in association with tumour location, histological subtype and grade. J Neurooncol 97:353–364

    Article  PubMed  Google Scholar 

  27. Modena P, Buttarelli FR, Miceli R et al (2012) Predictors of outcome in an AIEOP series of childhood ependymomas: a multifactorial analysis. Neurooncology 14:1346–1356

    CAS  Google Scholar 

  28. Ellison DW, Kocak M (2011) Histopathological grading of paediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed 10:7

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schiffer D, Chio A, Giordana MT et al (1991) Histologic prognostic factors in ependymoma. Childs Nerv Syst 7:177–182

    Article  CAS  PubMed  Google Scholar 

  30. Bennetto L, Foreman N, Harding B et al (1998) Ki-67 immunolabelling index is a prognostic indicator in childhood posterior fossa ependymomas. Neuropathol Appl Neurobiol 24:434–440

    Article  CAS  PubMed  Google Scholar 

  31. Neumann E, Kalousek DK, Norman MG, Steinbok P, Cochrane DD, Goddard K (1993) Cytogenetic analysis of 109 pediatric central nervous system tumors. Cancer Genet Cytogenet 71:40–49

    Article  CAS  PubMed  Google Scholar 

  32. Mazewski C, Soukup S, Ballard E, Gotwals B, Lampkin B (1998) Karyotype studies in 18 ependymomas with literature review of 107 cases. Cancer Genet Cytogenet 113:1–8

    Article  Google Scholar 

  33. Reardon DA, Entrekin RE, Sublett J et al (1999) Chromosome arm 6q loss is the most common recurrent autosomal alteration detected in primary pediatric ependymoma. Genes Chromosomes Cancer 24:230–237

    Article  CAS  PubMed  Google Scholar 

  34. Ward S, Harding B, Wilkins P et al (2001) Gain of 1q and loss of 22 are the most common changes detected by comparative genomic hybridization in paediatric ependymoma. Genes Chromosomes Cancer 32:59–66

    Article  CAS  PubMed  Google Scholar 

  35. Hirose Y, Aldape K, Bollen A et al (2001) Chromosomal abnormalities subdivide ependymal tumors into clinically relevant groups. Am J Pathol 158:1137–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Struski S, Doco-Fenzy M, Cornillet-Lefebvre P (2002) Compilation of published comparative genomic hybridization studies. Cancer Genet Cytogenet 135:63–90

    Article  CAS  PubMed  Google Scholar 

  37. Forus A, Weghuis DO, Smeets D et al (1995) Comparative genomic hybridization analysis of human sarcomas: I. Occurrence of genomic imbalances and identification of a novel major amplicon at 1q21-q22 in soft tissue sarcomas. Genes Chromosomes Cancer 14:8–14

    Article  CAS  PubMed  Google Scholar 

  38. Hing S, Lu YJ, Summersgill B et al (2001) Gain of 1q is associated with adverse outcome in favorable histology Wilms’ tumors. Am J Pathol 158:393–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nilsson M, Meza-Zepeda LA, Mertens F et al (2004) Amplification of chromosome 1 sequences in lipomatous tumors and other sarcomas. Int J Cancer 109:363–369

    Article  CAS  PubMed  Google Scholar 

  40. Kresse SH, Berner JM, Meza-Zepeda LA et al (2005) Mapping and characterization of the amplicon near APOA2 in 1q23 in human sarcomas by FISH and array CGH. Mol Cancer 4:39

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen L, Chan TH, Guan XY (2010) Chromosome 1q21 amplification and oncogenes in hepatocellular carcinoma. Acta Pharmacol Sin 31:1165–1171

    Article  PubMed  PubMed Central  Google Scholar 

  42. Scheil S, Brüderlein S, Eicker M et al (2001) Low frequency of chromosomal imbalances in anaplastic ependymomas as detected by comparative genomic hybridization. Brain Pathol 11:133–143

    Article  CAS  PubMed  Google Scholar 

  43. Dyer S, Prebble E, Davison V et al (2002) Genomic imbalances in paediatric intracranial ependymomas define clinically relevant groups. Am J Pathol 161:2133–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grill J, Avet-Loiseau H, Lellouch-Tubiana A et al (2002) Comparative genomic hybridization detects specific cytogenetic abnormalities in pediatric ependymomas and choroid plexus papillomas. Cancer Genet Cytogenet 136:121–125

    Article  CAS  PubMed  Google Scholar 

  45. Witt H, Mack SC, Ryzhova M et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20:143–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rand V, Prebble E, Ridley L et al (2008) Investigation of chromosome 1q reveals differential expression of members of the S100 family in clinical subgroups of intracranial paediatric ependymoma. Br J Cancer 99:1136–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rodriguez D, Cheung MC, Housri N et al (2009) Outcomes of malignant CNS ependymomas: an examination of 2408 cases through the surveillance, epidemiology, and end results (SEER) database (1973–2005). J Surg Res 156:340–351

    Article  PubMed  Google Scholar 

  48. Lyons MK, Kelly PJ (1991) Posterior fossa ependymomas: report of 30 cases and review of the literature. Neurosurgery 28:659–664

    Article  CAS  PubMed  Google Scholar 

  49. Schild SE, Nisi K, Scheithauer BW et al (1998) The results of radiotherapy for ependymomas: the Mayo Clinic experience. Int J Radiat Oncol Biol Phys 42:953–958

    Article  CAS  PubMed  Google Scholar 

  50. Reni M, Brandles AA, Vavassori V et al (2004) A multicentric study of the prognosis and treatment of adult brain ependymal tumours. Cancer 100:1221–1229

    Article  PubMed  Google Scholar 

  51. Raghunathan A, Wani K, Armstrong TS et al, Collaborative Ependymoma Research Network (2013) Histological predictors of outcome in ependymoma are dependent on anatomic site within the central nervous system. Brain Pathol 23:584–594

Download references

Acknowledgments

The authors are grateful to Mr. Rajeshwar Khadia and Mr. Ravi Yadav for helping with the FISH studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehar Chand Sharma.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeshwari, M., Sharma, M.C., Kakkar, A. et al. Evaluation of chromosome 1q gain in intracranial ependymomas. J Neurooncol 127, 271–278 (2016). https://doi.org/10.1007/s11060-015-2047-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-2047-z

Keywords

Navigation