Skip to main content

Advertisement

Log in

Somatic cell transfer of c-Myc and Bcl-2 induces large-cell anaplastic medulloblastomas in mice

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

A highly aggressive subgroup of the pediatric brain tumor medulloblastoma is characterized by overexpression of the proto-oncogene c-Myc, which encodes a transcription factor that normally maintains neural progenitor cells in an undifferentiated, proliferating state during embryonic development. Myc-driven medulloblastomas typically show a large-cell anaplastic (LCA) histological pattern, in which tumor cells display large, round nuclei with prominent nucleoli. This subgroup of medulloblastoma is therapeutically challenging because it is associated with a high rate of metastatic dissemination, which is a powerful predictor of short patient survival times. Genetically engineered mouse models have revealed important insights into the pathogenesis of medulloblastoma and served as preclinical testing platforms for new therapies. Here we report a new mouse model of Myc-driven medulloblastoma, in which tumors arise in situ after retroviral transfer and expression of Myc in Nestin-expressing neural progenitor cells in the cerebella of newborn mice. Tumor induction required concomitant loss of Tp53 or overexpression of the antiapoptotic protein Bcl-2. Like Myc-driven medulloblastomas in humans, the tumors induced in mice by Myc + Bcl-2 and Myc − Tp53 showed LCA cytoarchitecture and a high rate of metastatic dissemination to the spine. The fact that Myc − Tp53 tumors arose only in Tp53 −/− mice, coupled with the inefficient germline transmission of the Tp53-null allele, made retroviral transfer of Myc + Bcl-2 a more practical method for generating LCA medulloblastomas. The high rate of spinal metastasis (87 % of brain tumor–bearing mice) will be an asset for testing new therapies that target the most lethal aspect of medulloblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, Eberhart CG, Parsons DW, Rutkowski S, Gajjar A, Ellison DW, Lichter P, Gilbertson RJ, Pomeroy SL, Kool M, Pfister SM (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123:465–472. doi:10.1007/s00401-011-0922-z

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, Bouffet E, Clifford SC, Hawkins CE, French P, Rutka JT, Pfister S, Taylor MD (2010) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29:1408–1414. doi:10.1200/JCO.2009.27.4324

    Article  PubMed  Google Scholar 

  3. Ellison DW, Kocak M, Dalton J, Megahed H, Lusher ME, Ryan SL, Zhao W, Nicholson SL, Taylor RE, Bailey S, Clifford SC (2011) Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J Clin Oncol 29:1400–1407. doi:10.1200/JCO.2010.30.2810

    Article  PubMed  PubMed Central  Google Scholar 

  4. Northcott PA, Jones DT, Kool M, Robinson GW, Gilbertson RJ, Cho YJ, Pomeroy SL, Korshunov A, Lichter P, Taylor MD, Pfister SM (2012) Medulloblastomics: the end of the beginning. Nat Rev Cancer 12:818–834. doi:10.1038/nrc3410

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Cohen MM Jr (2010) Hedgehog signaling update. Am J Med Genet A 152A:1875–1914. doi:10.1002/ajmg.a.32909

    Article  PubMed  CAS  Google Scholar 

  6. Rao G, Pedone CA, Coffin CM, Holland EC, Fults DW (2003) c-Myc enhances sonic hedgehog-induced medulloblastoma formation from nestin-expressing neural progenitors in mice. Neoplasia 5:198–204

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Coon V, Laukert T, Pedone CA, Laterra J, Kim KJ, Fults DW (2010) Molecular therapy targeting Sonic hedgehog and hepatocyte growth factor signaling in a mouse model of medulloblastoma. Mol Cancer Ther 9:2627–2636. doi:10.1158/1535-7163.mct-10-0486

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Smith K, Dalton S (2010) Myc transcription factors: key regulators behind establishment and maintenance of pluripotency. Regen Med 5:947–959. doi:10.2217/rme.10.79

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Kawauchi D, Robinson G, Uziel T, Gibson P, Rehg J, Gao C, Finkelstein D, Qu C, Pounds S, Ellison DW, Gilbertson RJ, Roussel MF (2012) A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 21:168–180. doi:10.1016/j.ccr.2011.12.023

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Pei Y, Moore CE, Wang J, Tewari AK, Eroshkin A, Cho YJ, Witt H, Korshunov A, Read TA, Sun JL, Schmitt EM, Miller CR, Buckley AF, McLendon RE, Westbrook TF, Northcott PA, Taylor MD, Pfister SM, Febbo PG, Wechsler-Reya RJ (2012) An animal model of MYC-driven medulloblastoma. Cancer Cell 21:155–167. doi:10.1016/j.ccr.2011.12.021

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Holland EC, Hively WP, DePinho RA, Varmus HE (1998) A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12:3675–3685

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4:1–7

    Article  PubMed  CAS  Google Scholar 

  13. Federspiel MJ, Bates P, Young JAT, Varmus HE, Hughes SH (1994) A system for tissue-specific gene targeting: transgenic mice susceptible to subgroup A avian leukosis virus-based retroviral vectors. Proc Natl Acad Sci USA 91:11241–11245

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. McCall TD, Pedone CA, Fults DW (2007) Apoptosis suppression by somatic cell transfer of Bcl-2 promotes Sonic hedgehog-dependent medulloblastoma formation in mice. Cancer Res 67:5179–5185. doi:10.1158/0008-5472.can-06-4177

    Article  PubMed  CAS  Google Scholar 

  15. Gregory MA, Qi Y, Hann SR (2003) Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem 278:51606–51612

    Article  PubMed  CAS  Google Scholar 

  16. Welcker M, Orian A, Jin J, Grim JA, Harper JW, Eisenman RN, Clurman BE (2004) The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 101:9085–9090

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Coffin CM, Braun JT, Wick MR, Dehner LP (1990) A clinicopathologic and immunohistochemical analysis of 53 cases of medulloblastomas with emphasis on synaptophysin expression. Mod Pathol 3:164–170

    PubMed  CAS  Google Scholar 

  18. Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211

    PubMed  CAS  Google Scholar 

  19. Easter SS, Ross LS, Frankfurter A (1993) Initial tract formation in the mouse brain. J Neurosci 13:285–299

    PubMed  Google Scholar 

  20. Zhukova N, Ramaswamy V, Remke M, Pfaff E, Shih DJ, Martin DC, Castelo-Branco P, Baskin B, Ray PN, Bouffet E, von Bueren AO, Jones DT, Northcott PA, Kool M, Sturm D, Pugh TJ, Pomeroy SL, Cho YJ, Pietsch T, Gessi M et al (2013) Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol 31:2927–2935. doi:10.1200/JCO.2012.48.5052

    Article  PubMed  Google Scholar 

  21. Green DR, Evan GI (2002) A matter of life and death. Cancer Cell 1:19–30

    Article  PubMed  CAS  Google Scholar 

  22. Junttila MR, Evan GI (2009) p53: a Jack of all trades but master of none. Nat Rev Cancer 9:821–829. doi:10.1038/nrc2728

    Article  PubMed  CAS  Google Scholar 

  23. Delbridge AR, Strasser A (2015) The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ 22:1071–1080. doi:10.1038/cdd.2015.50

    Article  PubMed  CAS  Google Scholar 

  24. Schüller U, Schober F, Kretzschmar HA, Herms J (2004) Bcl-2 expression inversely correlates with tumour cell differentiation in medulloblastoma. Neuropathol Appl Neurobiol 30:513–521

    Article  PubMed  Google Scholar 

  25. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63. doi:10.1038/nrm3722

    Article  PubMed  CAS  Google Scholar 

  26. Cho YJ, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H, Berhoukim R, Amani V, Goumnerova L, Eberhart CG, Lau CC, Olson JM, Gilbertson RJ, Gajjar A, Delattre O, Kool M, Ligon K, Meyerson M, Mesirov JP, Pomeroy SL (2011) Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J Clin Oncol 29:1424–1430. doi:10.1200/JCO.2010.28.5148

    Article  PubMed  PubMed Central  Google Scholar 

  27. Holland EC, Varmus HE (1998) Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc Natl Acad Sci USA 95:1218–1223

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. von Werder A, Seidler B, Schmid RM, Schneider G, Saur D (2012) Production of avian retroviruses and tissue-specific somatic retroviral gene transfer in vivo using the RCAS/TVA system. Nat Protoc 7:1167–1183. doi:10.1038/nprot.2012.060

    Article  Google Scholar 

  29. Kasuga C, Nakahara Y, Ueda S, Hawkins C, Taylor MD, Smith CA, Rutka JT (2008) Expression of MAGE and GAGE genes in medulloblastoma and modulation of resistance to chemotherapy. Lab Investig J Neurosurg Pediatr 1:305–313. doi:10.3171/PED/2008/1/4/305

    Article  Google Scholar 

  30. Oba-Shinjo SM, Caballero OL, Jungbluth AA, Rosemberg S, Old LJ, Simpson AJ, Marie SK (2008) Cancer-testis (CT) antigen expression in medulloblastoma. Cancer Immun Arch 8:7

    Google Scholar 

  31. Sonabend AM, Ogden AT, Maier LM, Anderson DE, Canoll P, Bruce JN, Anderson RC (2012) Medulloblasoma: challenges for effective immunotherapy. J Neurooncol 108:1–10. doi:10.1007/s11060-011-0776-1

    Article  PubMed  CAS  Google Scholar 

  32. Doucette T, Yang Y, Zhang W, Fuller GN, Suki D, Fults DW, Rao G (2011) Bcl-2 promotes malignant progression in a PDGF-B-dependent murine model of oligodendroglioma. Int J Cancer 129:2093–2103. doi:10.1002/ijc.25869

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Laulier C, Lopez BS (2012) The secret life of Bcl-2: apoptosis-independent inhibition of DNA repair by Bcl-2 family members. Mutat Res 751:247–257. doi:10.1016/j.mrrev.2012.05.002

    Article  PubMed  CAS  Google Scholar 

  34. Othman RT, Kimishi I, Bradshaw TD, Storer LC, Korshunov A, Pfister SM, Grundy RG, Kerr ID, Coyle B (2014) Overcoming multiple drug resistance mechanisms in medulloblastoma. Acta Neuropathol Commun 2:57. doi:10.1186/2051-5960-2-57

    Article  PubMed  PubMed Central  Google Scholar 

  35. van Riggelen J, Yetil A, Felsher DW (2010) MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 10:301–309. doi:10.1038/nrc2819

    Article  PubMed  Google Scholar 

  36. Pierce SB, Yost C, Britton JS, Loo LW, Flynn EM, Edgar BA, Eisenman RN (2004) dMyc is required for larval growth and endoreplication in Drosophila. Development 131:2317–2327. doi:10.1242/dev.01108

    Article  PubMed  CAS  Google Scholar 

  37. Kim S, Li Q, Dang CV, Lee LA (2000) Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc Natl Acad Sci USA 97:11198–11202. doi:10.1073/pnas.200372597

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Iritani BM, Eisenman RN (1999) c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc Natl Acad Sci USA 96:13180–13185

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Momota H, Shih AH, Edgar MA, Holland EC (2008) c-Myc and beta-catenin cooperate with loss of p53 to generate multiple members of the primitive neuroectodermal tumor family in mice. Oncogene 27:4392–4401. doi:10.1038/onc.2008.81

    Article  PubMed  CAS  Google Scholar 

  40. Shakhova O, Leung C, van Montfort E, Berns A, Marino S (2006) Lack of Rb and p53 delays cerebellar development and predisposes to large cell anaplastic medulloblastoma through amplification of N-Myc and Ptch2. Cancer Res 66:5190–5200. doi:10.1158/0008-5472.CAN-05-3545

    Article  PubMed  CAS  Google Scholar 

  41. Shih DJ, Northcott PA, Remke M, Korshunov A, Ramaswamy V, Kool M, Luu B, Yao Y, Wang X, Dubuc AM, Garzia L, Peacock J, Mack SC, Wu X, Rolider A, Morrissy AS, Cavalli FM, Jones DT, Zitterbart K, Faria CC et al (2014) Cytogenetic prognostication within medulloblastoma subgroups. J Clin Oncol 32:886–896. doi:10.1200/JCO.2013.50.9539

    Article  PubMed  PubMed Central  Google Scholar 

  42. Stearns D, Chaudhry A, Abel TW, Burger PC, Dang CV, Eberhart CG (2006) c-myc overexpression causes anaplasia in medulloblastoma. Cancer Res 66:673–681. doi:10.1158/0008-5472.CAN-05-1580

    Article  PubMed  CAS  Google Scholar 

  43. Jenkins NC, Kalra RR, Dubuc A, Sivakumar W, Pedone CA, Wu X, Taylor MD, Fults DW (2014) Genetic drivers of metastatic dissemination in sonic hedgehog medulloblastoma. Acta Neuropathol Commun 2:85. doi:10.1186/s40478-014-0085-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Kristin Kraus (University of Utah) for editorial assistance. This work was supported by Grants from the National Institutes of Health (R01CA18622 to DWF and K08NS070928 to GR) and the Huntsman Cancer Institute of the University of Utah (P30CA042014 to DF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Fults.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11060_2015_1985_MOESM1_ESM.tif

Supplementary Fig. 1. Comparative expression of Myc and prosurvival Bcl-2 family member genes in human Group 3 medulloblastomas. The color-coded Z-score for each tumor specimen is the number of standard deviations that the expression level of a gene is shifted above (red) or below (blue) the mean. Z-scores are shown for a discovery cohort (n = 46) and an independent validation cohort (n = 51). Purple bars below indicate tumors in which expression of both Myc and Bcl-2 was increased. Supplementary material 1(TIFF 1171 kb)

11060_2015_1985_MOESM2_ESM.tif

Supplementary Fig. 2. Kaplan–Meier survival analysis of mice after retroviral transfer of Shh and Myc + Bcl-2. The mice were injected with RCAS-SHH or RCAS-Myc and RCAS-Bcl-2 on day zero and sacrificed at the indicated time points. Supplementary material 2 (TIFF 8237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenkins, N.C., Rao, G., Eberhart, C.G. et al. Somatic cell transfer of c-Myc and Bcl-2 induces large-cell anaplastic medulloblastomas in mice. J Neurooncol 126, 415–424 (2016). https://doi.org/10.1007/s11060-015-1985-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1985-9

Keywords

Navigation