Skip to main content

Advertisement

Log in

Therapeutic potential of cyclooxygenase-3 inhibitors in the management of glioblastoma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

In this study we investigated the expression of COX-1, COX-2 and COX-3 mRNA in C6 glioblastoma and normal brain tissues and the effects of acetaminophen, indomethacin or metamizole treatments on the development of C6 glioblastoma in relation with COX inhibition. Glioblastoma cells were inoculated intracerebrally into frontal lobe of adult male Wistar albino rats. 10 days after inoculation, rats were treated with 150 mg/kg acetaminophen, 10 mg/kg indomethacin or 150 mg/kg metamizole. The tumor size was measured histologically and total RNA was isolated from tumor or normal brain tissue and mRNA levels of COX isoforms were determined by qRT-PCR. Our results showed the presence of COX-1, COX-2 and COX-3 expressions in both C6 glioblastoma and normal brain tissues. In tumor tissues COX-3 expression was significantly higher than normal brain tissue (p < 0.05) while there was no significant difference in COX-1 and COX-2 expressions. Acetaminophen and indomethacin decreased the tumor size by 71 and 43 % by inhibiting COX-3 mRNA expression around 87 and 91 % respectively. For the first time our study proposes a possible relationship between COX-3 mRNA expression and C6 glioblastoma development. We also suggested that the inhibition of COX-3 enzyme may be responsible for decrease in tumor size in part, the mechanism by which acetaminophen and indomethacin decreased rat C6 glioblastoma growth. However, the molecular events responsible for COX-3 effects on tumor development are still unresolved as these drugs exert their anti-cancer effect via both COX-3 dependent and independent mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Annegers JF, Schoenberg BS, Okazaki H, Kurland LT (1981) Epidemiologic study of primary intracranial neoplasms. Arch Neurol 38(4):217–219

    Article  PubMed  CAS  Google Scholar 

  2. Counsell CE, Grant R (1998) Incidence studies of primary and secondary intracranial tumors: a systematic review of their methodology and results. J Neurooncol 37(3):241–250

    Article  PubMed  CAS  Google Scholar 

  3. Castro MG, Cowen R, Williamson IK, David A, Jimenez-Dalmaroni MJ, Yuan X, Bigliari A, Williams JC, Hu J, Lowenstein PR (2003) Current and future strategies for the treatment of malignant brain tumors. Pharmacol Ther 98(1):71–108

    Article  PubMed  CAS  Google Scholar 

  4. Funk CD, Funk LB, Kennedy ME, Pong AS, Fitzgerald GA (1991) Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment. FASEB J 5:2304–2312

    PubMed  CAS  Google Scholar 

  5. Flower RJ, Vane JR (1972) Inhibition of prostaglandin synthetase in brain explains the anti-pyretic activity of paracetamol (4-acetamidophenol). Nature 240(5381):410–411

    Article  PubMed  CAS  Google Scholar 

  6. Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31(5):986–1000. doi:10.1161/ATVBAHA.110.207449

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, Elton TS, Simmons DL (2002) COX-3, a cyclooxygenase-1 variant inhibitied by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA 99(21):13926–13931

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Kis B, Snipes JA, Isse T, Nagy K, Busija DW (2003) Putative cyclooxygenase-3 expression in rat brain cells. J Cereb Blood Flow Metab 23(11):1287–1292

    Article  PubMed  CAS  Google Scholar 

  9. Hla T, Neilson K (1992) Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci USA 89(16):7384–7388

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Dannenberg AJ, Altorki NK, Boyle JO, Dang C, Howe LR, Weksler BB, Subbaramaiah K (2001) Cyclo-oxygenase 2: a pharmacological target for the prevention of cancer. Lancet Oncol 2(9):544–551

    Article  PubMed  CAS  Google Scholar 

  11. Shono T, Tofilon PJ, Bruner JM, Owolabi O, Lang FF (2001) Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res 61(11):4375–4381

    PubMed  CAS  Google Scholar 

  12. Dufour M, Faes S, Dormond-Meuwly A, Demartines N, Dormond O (2014) PGE2-induced colon cancer growth is mediated by mTORC1. Biochem Biophys Res Commun 451(4):587–591. doi:10.1016/j.bbrc.2014.08.032

    Article  PubMed  CAS  Google Scholar 

  13. Kökoğlu E, Tüter Y, Sandikçi KS, Yazici Z, Ulakoğlu EZ, Sönmez H, Ozyurt E (1998) Prostaglandin E2 levels in human brain tumor tissues and arachidonic acid levels in the plasma membrane of human brain tumors. Cancer Lett 132(1–2):17–21

    Article  PubMed  Google Scholar 

  14. Rayburn RE, Ezell JS, Zhang R (2009) Anti-inflammatory agents for cancer therapy. Mol Cell Pharmacol 1(1):29–43. doi:10.4255/mcpharmacol.09.05

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Shiff Steven J, Rigas Basil (1999) The role of cyclooxygenase inhibition in the antineoplastic effects of nonsteroidal antiinflammatory drugs (Nsaids). J Exp Med 190(4):445–450

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Botting RM (2000) Mechanism of action of acetaminophen: is there a cyclooxygenase 3? Clin Infect Dis 5:S202–S210

    Article  Google Scholar 

  17. Bae MA, Pie JE, Song BJ (2001) Acetaminophen induces apoptosis of C6 glioma cells by activating the c-Jun NH(2)-terminal protein kinase-related cell death pathway. Mol Pharmacol 60(4):847–856

    PubMed  CAS  Google Scholar 

  18. Gupta RA, Tan J, Krause WF, Geraci MW, Willson TM, Dey SK, DuBois RN (2000) Prostacyclin-mediated activation of peroxisome peroxiome proliferator-activated receptor delta in colorectal cancer. Proc Natl Acad Sci USA 97:13275–13280. doi:10.1073/pnas.97.24.13275

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Yasumaru M, Tsuji S, Tsujii M, Irie T, Komori M, Kimura A, Nishida T, Kakiuchi Y, Kawai N, Murata H, Horimoto M, Sasaki Y, Hayashi N, Kawano S, Hori M (2003) Inhibition of angiotensin II activity enhanced the antitumor effect of cyclooxygenase-2 inhibitors via insulin-like growth factor I receptor pathway. Cancer Res 63:6726–6734

    PubMed  CAS  Google Scholar 

  20. Amin R, Kamitani H, Sultana H, Taniura S, Islam A, Sho A, Ishibashi M, Eling TE, Watanabe T (2003) Aspirin and indomethacin exhibit antiproliferative effects and induce apoptosis in T98G human glioblastoma cells. Neurol Res 25(4):370–376

    Article  PubMed  CAS  Google Scholar 

  21. Kondziolka D, Mori Y, Martinez AJ, McLaughlin MR, Flickinger JC, Lunsford LD (1999) Beneficial effects of the radioprotectant 21-aminosteroid U-74389G in a radiosurgery rat malignant glioma model. Int J Radiat Oncol Biol Phys 44(1):179–184

    Article  PubMed  CAS  Google Scholar 

  22. Lister CF, McLean AE (1997) Inhibition of DNA synthesis by paracetamol in different tissues of the rat in vivo. Toxicology 116(1–3):49–57

    Article  PubMed  CAS  Google Scholar 

  23. Taylor J, Mellström B, Fernaud I, Naranjo JR (1998) Metamizol potentiates morphine effects on visceral pain and evoked c-Fos immunoreactivity in spinal cord. Eur J Pharmacol 351(1):39–47

    Article  PubMed  CAS  Google Scholar 

  24. Miyazawa T, Matsumoto M, Kato S, Takeuchi K (2003) Dopamine-induced protection against indomethacin-evoked intestinal lesions in rats–role of anti-intestinal motility mediated by D2 receptors. Med Sci Monit 9(2):71–77

    Google Scholar 

  25. Köhling R, Senner V, Paulus W, Speckmann EJ (2006) Epileptiform activity preferentially arises outside tumor invasion zone in glioma xenotransplants. Neurobiol Dis 22(1):64–75

    Article  PubMed  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  27. Al-Salihi MA, Terrece Pearman A, Doan T, Reichert EC, Rosenberg DW, Prescott SM, Stafforini DM, Topham MK (2009) Transgenic expression of cyclooxygenase-2 in mouse intestine epithelium is insufficient to initiate tumorigenesis but promotes tumor progression. Cancer Lett 273:225–232

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Daugherty SE, Moore SC, Pfeiffer RM, Inskip PD, Park Y, Hollenbeck A, Rajaraman P (2011) Nonsteroidal anti-inflammatory drugs and glioma in the NIHAARP diet and health study cohort. Cancer Prev Res (Phila) 4(12):2027–2034

    Article  CAS  Google Scholar 

  29. Yoshimoto A, Kasahara K, Kawashima A, Fujimura M, Nakao S (2005) Characterization of the prostaglandine biosynthetic pathway in non-small cell lung cancer: a comparison with small cell lung cancer and correlation with angiogenesis, angiogenic factors and metastases. Oncol Rep 13:1049–1057

    PubMed  CAS  Google Scholar 

  30. Carvalho B, Sillars-Hardebol AH, Postma C, Mongera S, Droste JT, Obulkasim A, van de Wiel M, van Criekinge W, Ylstra B, Fijneman RJ, Meijer GA (2012) Colorectal adenoma to carcinoma progression is accompanied by changes in gene expression associated with ageing, chromosomal instability, and fatty acid metabolism. Cell Oncol 35:53–63

    Article  CAS  Google Scholar 

  31. Nosho K, Yoshida M, Yamamoto H, Taniguchi H, Adachi Y, Mikami M, Hinoda Y, Imai K (2005) Association of Ets-related transcriptional factor E1AF expression with overexpression of matrix metalloproteinases, COX-2 and iNOS in the early stage of colorectal carcinogenesis. Carcinogenesis 26:892–899

    Article  PubMed  CAS  Google Scholar 

  32. Roelofs HMJ, Morsche RHM, van Heumen BWH, Nagengast FM, Peters WHM (2014) Over-expression of COX-2 mRNA in colorectal cancer. BMC Gastroenterol 14(1):1–6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ishikawa T, Herschman HR (2010) Tumor formation in a mouse model of colitis-associated colon cancer does not require COX-1 or COX-2 expression. Carcinogenesis 31:729–736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Antonacopoulou AG, Tsamandas AC, Petsas T, Liava A, Scopa CD, Papavassiliou AG, Kalofonos HP (2008) EGFR, HER-2 and COX-2 levels in colorectal cancer. Histopathology 53:698–706

    Article  PubMed  CAS  Google Scholar 

  35. Schreinemachers DM, Everson RB (1994) Aspirin use and lung, colon and breast cancer incidence in a prospective study. Epidemiology 5:138–146

    Article  PubMed  CAS  Google Scholar 

  36. Muscat JE, Stellman SD, Wynder EL (1995) Analgesic use and colorectal cancer. Prev Med 24:110–112

    Article  PubMed  CAS  Google Scholar 

  37. Lupulescu A (1996) Prostaglandins, their inhibitors and cancer. Prostaglandins Leukot Essent Fatty Acids 54:83–94

    Article  PubMed  CAS  Google Scholar 

  38. Sivak-Sears NR, Schwartzbaum JA, Miike R, Moghadassi M, Wrensch M (2004) Case-control study of use of nonsteroidal antiinflammatory drugs and glioblastoma multiforme. Am J Epidemiol 159(12):1131–1139

    Article  PubMed  Google Scholar 

  39. Kökoğlu E, Tüter Y, Yazici Z, Sandikci KS, Sönmez H, Ulakoğlu EZ, Ozyurt E (1998) Profiles of the fatty acids in the plasma membrane of human brain tumors. Cancer Biochem Biophys 16(4):301–312

    PubMed  Google Scholar 

  40. Wang D, Dubois RN (2010) Eicosanoids and cancer. Nat Rev Cancer 10:181–193

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Yazici Z, Tavares IA, Soydan AS, Hollingsworth SJ, Bishai PM, Bennett A (1992) Methotrexate alters the fatty acid composition of NC adenocarcinoma cells in culture. Eur J Cancer 28A(8–9):1468–1471

    Article  PubMed  CAS  Google Scholar 

  42. Bredel M, Pollack IF (1999) The p21-Ras signal transduction pathway and growth regulation in human high-grade gliomas. Brain Res Rev 29:232–249

    Article  PubMed  CAS  Google Scholar 

  43. Bredel M, Pollack IF (1997) The role of protein kinase C (PKC) in the evolution and proliferation of malignant gliomas, and the application of PKC inhibition as a novel approach to anti-glioma therapy. Acta Neurochir (Wien) 139:1000–1013

    Article  CAS  Google Scholar 

  44. Schelegel J, Piontek G, Budde B, Neff F, Kraus A (2000) The Akt/PKB dependent anti-apoptotic pathway and the MAPK cascade are alternatively activated in human glioblastoma multiforme. Cancer Lett 158:103–108

    Article  Google Scholar 

  45. Grösch S, Maier TJ, Schiffmann S, Geisslinger G (2006) Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 98(11):736–747

    Article  PubMed  Google Scholar 

  46. Liang J, Slingerland JM (2003) Multiple roles of the PI3 K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2(4):339–345

    Article  PubMed  CAS  Google Scholar 

  47. Totzke G, Schulze-Osthoff K, Jänicke RU (2003) Cyclooxygenase-2 (COX-2) inhibitors sensitize tumor cells specifically to death receptor-induced apoptosis independently of COX-2 inhibition. Oncogene 22(39):8021–8030

    Article  PubMed  Google Scholar 

  48. Kang KB, Zhu C, Yong SK, Gao Q, Wong MC (2009) Enhanced sensitivity of celecoxib in human glioblastoma cells: induction of DNA damage leading to p53-dependent G1 cell cyclearrest and autophagy. Mol Cancer 8:66–82

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bernardi A, Jacques-Silva MC, Delgado-Canedo A, Lenz G, Battastini M (2006) Nonsteroidal anti-inflammatory drugs inhibit the growth of C6 and U138-MG glioma cell lines. Eur J Pharmacol 532(3):214–222

    Article  PubMed  CAS  Google Scholar 

  50. Wakimoto N, Wolf I, Yin D, O’Kelly J, Akagi T, Abramovitz L, Black KL, Tai HH, Koeffler HP (2008) Nonsteroidal anti-inflammatory drugs suppress glioma via 15-hydroxyprostaglandin dehydrogenase. Cancer Res 68:6978–6985

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Istanbul University Scientific research projects (T-705/30062005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeliha Yazici.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oksuz, E., Atalar, F., Tanırverdi, G. et al. Therapeutic potential of cyclooxygenase-3 inhibitors in the management of glioblastoma. J Neurooncol 126, 271–278 (2016). https://doi.org/10.1007/s11060-015-1976-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1976-x

Keywords

Navigation