Skip to main content

Advertisement

Log in

Genetic variations in the homologous recombination repair pathway genes modify risk of glioma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Accumulative epidemiological evidence suggests that single nucleotide polymorphisms (SNPs) in genes involved in homologous recombination (HR) DNA repair pathway play an important role in glioma susceptibility. However, the effects of such SNPs on glioma risk remain unclear. We used a used a candidate pathway-based approach to elucidate the relationship between glioma risk and 12 putative functional SNPs in genes involved in the HR pathway. Genotyping was conducted on 771 histologically-confirmed glioma patients and 752 cancer-free controls from the Chinese Han population. Odds ratios (OR) were calculated both for each SNP individually and for grouped analyses, examining the effects of the numbers of adverse alleles on glioma risk, and evaluated their potential gene–gene interactions using the multifactor dimensionality reduction (MDR). In the single-locus analysis, two variants, the NBS1 rs1805794 (OR 1.42, 95 % CI 1.15–1.76, P = 0.001), and RAD54L rs1048771 (OR 1.61, 95 % CI 1.17–2.22, P = 0.002) were significantly associated with glioma risk. When we examined the joint effects of the risk-conferring alleles of these three SNPs, we found a significant trend indicating that the risk increases as the number of adverse alleles increase (P = 0.005). Moreover, the MDR analysis suggested a significant three-locus interaction model involving NBS1 rs1805794, MRE11 rs10831234, and ATM rs227062. These results suggested that these variants of the genes involved in the HR pathway may contribute to glioma susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wrensch M et al (2009) Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet 41(8):905–908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Sanson M et al (2011) Chromosome 7p11.2 (EGFR) variation influences glioma risk. Hum Mol Genet 20(14):2897–2904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Shete S et al (2009) Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 41(8):899–904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Chen H et al (2011) Association of sequence variants on chromosomes 20, 11, and 5 (20q13.33, 11q23.3, and 5p15.33) with glioma susceptibility in a chinese population. Am J Epidemiol 173(8):915–922

    Article  PubMed  Google Scholar 

  5. Jiang M et al (2008) Retinoic acid induces caspase-8 transcription via phospho-CREB and increases apoptotic responses to death stimuli in neuroblastoma cells. Biochim Biophys Acta 1783(6):1055–1067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Das A, Banik NL, Ray SK (2007) Differentiation decreased telomerase activity in rat glioblastoma C6 cells and increased sensitivity to IFN-gamma and taxol for apoptosis. Neurochem Res 32(12):2167–2183

    Article  CAS  PubMed  Google Scholar 

  7. Ding H et al (2004) Regulation of murine telomere length by Rtel: an essential gene encoding a helicase-like protein. Cell 117(7):873–886

    Article  CAS  PubMed  Google Scholar 

  8. Barber LJ et al (2008) RTEL1 maintains genomic stability by suppressing homologous recombination. Cell 135(2):261–271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Fuxe J et al (2000) Adenovirus-mediated overexpression of p15INK4B inhibits human glioma cell growth, induces replicative senescence, and inhibits telomerase activity similarly to p16INK4A. Cell Growth Differ 11(7):373–384

    CAS  PubMed  Google Scholar 

  10. Little MP et al (1998) Risks of brain tumour following treatment for cancer in childhood: modification by genetic factors, radiotherapy and chemotherapy. Int J Cancer 78(3):269–275

    Article  CAS  PubMed  Google Scholar 

  11. Bondy ML et al (2001) Gamma-radiation sensitivity and risk of glioma. J Natl Cancer Inst 93(20):1553–1557

    Article  CAS  PubMed  Google Scholar 

  12. Neglia JP et al (2006) New primary neoplasms of the central nervous system in survivors of childhood cancer: a report from the childhood cancer survivor study. J Natl Cancer Inst 98(21):1528–1537

    Article  PubMed  Google Scholar 

  13. van Gent DC, Hoeijmakers HJ, Kanaar R (2001) Chromosomal stability and the DNA double-stranded break connection. Nat Genet 2:196–206

    Article  Google Scholar 

  14. Liu Y et al (2007) Tagging SNPs in non-homologous end-joining pathway genes and risk of glioma. Carcinogenesis 28(9):1906–1913

    Article  CAS  PubMed  Google Scholar 

  15. Liu Y et al (2008) Polymorphisms of LIG4 and XRCC4 involved in the NHEJ pathway interact to modify risk of glioma. Hum Mutat 29(3):381–389

    Article  PubMed  Google Scholar 

  16. Zhou K et al (2009) XRCC3 haplotypes and risk of gliomas in a Chinese population: a hospital-based case-control study. Int J Cancer 124(12):2948–2953

    Article  CAS  PubMed  Google Scholar 

  17. Wood RD et al (2001) Human DNA repair genes. Science 291(5507):1284–1289

    Article  CAS  PubMed  Google Scholar 

  18. Wang P et al (2006) SNP Function Portal: a web database for exploring the function implication of SNP alleles. Bioinformatics 22(14):e523–e529

    Article  CAS  PubMed  Google Scholar 

  19. Wu X et al (2006) Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am J Hum Genet 78(3):464–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Goode EL et al (2002) Effect of germ-line genetic variation on breast cancer survival in a population-based study. Cancer Res 62(11):3052–3057

    CAS  PubMed  Google Scholar 

  21. Annika A et al (2005) Polymorphisms in DNA repair genes and epithelial ovarian cancer risk. Int J Cancer 117:611–618

    Article  Google Scholar 

  22. Lu M et al (2009) Association between the NBS1 E185Q polymorphism and cancer risk: a meta-analysis. BMC Cancer 9:124

    Article  PubMed Central  PubMed  Google Scholar 

  23. Yao F et al (2013) Association between the NBS1 Glu185Gln polymorphism and breast cancer risk: a meta-analysis. Tumour Biol 34(2):1255–1262

    Article  CAS  PubMed  Google Scholar 

  24. Thomas J et al (2005) DNA repair gene XRCC1 polymorphisms in childhood acute lymphoblastic leukemia. Cancer Lett 217:17–24

    Article  Google Scholar 

  25. Paz YMC et al (2010) Relationship of an hRAD54 gene polymorphism (2290 C/T) in an Ecuadorian population with chronic myelogenous leukemia. Genet Mol Biol 33(4):646–649

    Article  Google Scholar 

  26. Kristina A, Camp NJ (2005) Characterization of the linkage disequilibrium structure and identification of tagging-SNPs in five DNA repair genes. BMC Cancer 5:99

    Article  Google Scholar 

  27. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC-19:716–723

    Article  Google Scholar 

  28. Ritchie MD et al (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69(1):138–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Moore JH, Williams SM (2002) New strategies for identifying gene-gene interactions in hypertension. Ann Med 34(2):88–95

    Article  CAS  PubMed  Google Scholar 

  30. Cho YM et al (2004) Multifactor-dimensionality reduction shows a two-locus interaction associated with Type 2 diabetes mellitus. Diabetologia 47(3):549–554

    Article  CAS  PubMed  Google Scholar 

  31. Tsai CT et al (2004) Renin-angiotensin system gene polymorphisms and atrial fibrillation. Circulation 109(13):1640–1646

    Article  CAS  PubMed  Google Scholar 

  32. Ma DQ et al (2005) Identification of significant association and gene-gene interaction of GABA receptor subunit genes in autism. Am J Hum Genet 77(3):377–388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kobayashi J (2004) Molecular mechanism of the recruitment of NBS1/hMRE11/hRAD50 complex to DNA double-strand breaks: NBS1 binds to gamma-H2AX through FHA/BRCT domain. J Radiat Res 45(4):473–478

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y et al (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 14(8):927–939

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Trujillo KM et al (1998) Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J Biol Chem 273(34):21447–21450

    Article  CAS  PubMed  Google Scholar 

  36. Fernet M et al (2005) Identification and functional consequences of a novel MRE11 mutation affecting 10 Saudi Arabian patients with the ataxia telangiectasia-like disorder. Hum Mol Genet 14(2):307–318

    Article  CAS  PubMed  Google Scholar 

  37. Lamarche BJ, Orazio NI, Weitzman MD (2010) The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett 584(17):3682–3695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Zhu XD et al (2000) Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet 25(3):347–352

    Article  CAS  PubMed  Google Scholar 

  39. Solinger JA, Kiianitsa K, Heyer WD (2002) Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell 10(5):1175–1188

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

China National “211” Environmental Genomics Grant. We thank the participants and staffs at the Huashan Hospital of Fudan University whose help made this study possible. Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daru Lu or Liangfu Zhou.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

All of the authors have declared no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, Y., Zhou, K. et al. Genetic variations in the homologous recombination repair pathway genes modify risk of glioma. J Neurooncol 126, 11–17 (2016). https://doi.org/10.1007/s11060-015-1892-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1892-0

Keywords

Navigation