Skip to main content

Advertisement

Log in

Ex vivo generation of dendritic cells from cryopreserved, post-induction chemotherapy, mobilized leukapheresis from pediatric patients with medulloblastoma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Generation of patient-derived, autologous dendritic cells (DCs) is a critical component of cancer immunotherapy with ex vivo-generated, tumor antigen-loaded DCs. An important factor in the ability to generate DCs is the potential impact of prior therapies on DC phenotype and function. We investigated the ability to generate DCs using cells harvested from pediatric patients with medulloblastoma for potential evaluation of DC-RNA based vaccination approach in this patient population. Cells harvested from medulloblastoma patient leukapheresis following induction chemotherapy and granulocyte colony stimulating factor mobilization were cryopreserved prior to use in DC generation. DCs were generated from the adherent CD14+ monocytes using standard procedures and analyzed for cell recovery, phenotype and function. To summarize, 4 out of 5 patients (80 %) had sufficient monocyte recovery to permit DC generation, and we were able to generate DCs from 3 out of these 4 patient samples (75 %). Overall, we successfully generated DCs that met phenotypic requisites for DC-based cancer therapy from 3 out of 5 (60 %) patient samples and met both phenotypic and functional requisites from 2 out of 5 (40 %) patient samples. This study highlights the potential to generate functional DCs for further clinical treatments from refractory patients that have been heavily pretreated with myelosuppressive chemotherapy. Here we demonstrate the utility of evaluating the effect of the currently employed standard-of-care therapies on the ex vivo generation of DCs for DC-based clinical studies in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Crawford J (2013) Childhood brain tumors. Pediatr Rev 34(2):63–78. doi:10.1542/pir.34-2-63

    Article  PubMed  Google Scholar 

  2. Pollack IF, Jakacki RI (2011) Childhood brain tumors: epidemiology, current management and future directions. Nat Rev Neurol 7(9):495–506. doi:10.1038/nrneurol.2011.110

    Article  PubMed  Google Scholar 

  3. Gajjar A, Chintagumpala M, Ashley D, Kellie S, Kun LE, Merchant TE, Woo S, Wheeler G, Ahern V, Krasin MJ, Fouladi M, Broniscer A, Krance R, Hale GA, Stewart CF, Dauser R, Sanford RA, Fuller C, Lau C, Boyett JM, Wallace D, Gilbertson RJ (2006) Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 7(10):813–820. doi:10.1016/S1470-2045(06)70867-1

    Article  PubMed  Google Scholar 

  4. Gururangan S, McLaughlin C, Quinn J, Rich J, Reardon D, Halperin EC, Herndon J 2nd, Fuchs H, George T, Provenzale J, Watral M, McLendon RE, Friedman A, Friedman HS, Kurtzberg J, Vredenbergh J, Martin PL (2003) High-dose chemotherapy with autologous stem-cell rescue in children and adults with newly diagnosed pineoblastomas. J Clin Oncol 21(11):2187–2191. doi:10.1200/JCO.2003.10.096

    Article  CAS  PubMed  Google Scholar 

  5. Packer RJ, Goldwein J, Nicholson HS, Vezina LG, Allen JC, Ris MD, Muraszko K, Rorke LB, Wara WM, Cohen BH, Boyett JM (1999) Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children’s Cancer Group Study. J Clin Oncol 17(7):2127–2136

    CAS  PubMed  Google Scholar 

  6. Rutkowski S, von Hoff K, Emser A, Zwiener I, Pietsch T, Figarella-Branger D, Giangaspero F, Ellison DW, Garre ML, Biassoni V, Grundy RG, Finlay JL, Dhall G, Raquin MA, Grill J (2010) Survival and prognostic factors of early childhood medulloblastoma: an international meta-analysis. J Clin Oncol 28(33):4961–4968. doi:10.1200/JCO.2010.30.2299

    Article  PubMed  Google Scholar 

  7. Wolff JE, Driever PH, Erdlenbruch B, Kortmann RD, Rutkowski S, Pietsch T, Parker C, Metz MW, Gnekow A, Kramm CM (2010) Intensive chemotherapy improves survival in pediatric high-grade glioma after gross total resection: results of the HIT-GBM-C protocol. Cancer 116(3):705–712. doi:10.1002/cncr.24730

    Article  PubMed  Google Scholar 

  8. Chandramohan V, Mitchell DA, Johnson LA, Sampson JH, Bigner DD (2013) Antibody, T-cell and dendritic cell immunotherapy for malignant brain tumors. Future Oncol 9(7):977–990. doi:10.2217/fon.13.47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Eyrich M, Rachor J, Schreiber SC, Wolfl M, Schlegel PG (2013) Dendritic cell vaccination in pediatric gliomas: lessons learnt and future perspectives. Front Pediatr 1:12. doi:10.3389/fped.2013.00012

    Article  PubMed Central  PubMed  Google Scholar 

  10. Ahn BJ, Pollack IF, Okada H (2013) Immune-checkpoint blockade and active immunotherapy for glioma. Cancers (Basel) 5(4):1379–1412. doi:10.3390/cancers5041379

    Article  CAS  Google Scholar 

  11. Jackson CM, Lim M, Drake CG (2014) Immunotherapy for brain cancer: recent progress and future promise. Clin Cancer Res. doi:10.1158/1078-0432.CCR-13-2057

    PubMed Central  Google Scholar 

  12. Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296. doi:10.1146/annurev.iy.09.040191.001415

    Article  CAS  PubMed  Google Scholar 

  13. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  CAS  PubMed  Google Scholar 

  14. Boczkowski D, Nair SK, Snyder D, Gilboa E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184(2):465–472

    Article  CAS  PubMed  Google Scholar 

  15. Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E (1998) Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 16(4):364–369. doi:10.1038/nbt0498-364

    Article  CAS  PubMed  Google Scholar 

  16. Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS, Vieweg J, Gilboa E (2000) Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 6(9):1011–1017. doi:10.1038/79519

    Article  CAS  PubMed  Google Scholar 

  17. Nair SK, Morse M, Boczkowski D, Cumming RI, Vasovic L, Gilboa E, Lyerly HK (2002) Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg 235(4):540–549

    Article  PubMed Central  PubMed  Google Scholar 

  18. Nair SK, De Leon G, Boczkowski D, Schmittling R, Xie W, Staats J, Liu R, Johnson LA, Weinhold K, Archer GE, Sampson JH, Mitchell DA (2014) Recognition and killing of autologous, primary glioblastoma tumor cells by human cytomegalovirus pp65-specific cytotoxic T cells. Clin Cancer Res 20(10):2684–2694. doi:10.1158/1078-0432.CCR-13-3268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Caruso DA, Orme LM, Neale AM, Radcliff FJ, Amor GM, Maixner W, Downie P, Hassall TE, Tang ML, Ashley DM (2004) Results of a phase 1 study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro Oncol 6(3):236–246. doi:10.1215/S1152851703000668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Nair S, Boczkowski D, Pruitt S, Urban J (2011) RNA in cancer vaccine therapy. In: Bot A, Obrocea M, Marincola FM (eds) Cancer vaccines: from research to clinical practice editors, 1st edn. Informa Healthcare, Geneva, pp 217–231

    Chapter  Google Scholar 

  21. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422. doi:10.1056/NEJMoa1001294

    Article  CAS  PubMed  Google Scholar 

  22. Boczkowski D, Nair SK, Nam JH, Lyerly HK, Gilboa E (2000) Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res 60(4):1028–1034

    CAS  PubMed  Google Scholar 

  23. Nair SK, De Leon G, Boczkowski D, Schmittling R, Xie W, Staats J, Liu R, Johnson LA, Weinhold K, Archer GE, Sampson JH, Mitchell DA (2014) Recognition and killing of autologous, primary glioblastoma tumor cells by human cytomegalovirus pp65-specific cytotoxic T cells. Clin Cancer Res. doi:10.1158/1078-0432.CCR-13-3268

    Google Scholar 

  24. Lee J, Boczkowski D, Nair S (2013) Programming human dendritic cells with mRNA. Methods Mol Biol 969:111–125. doi:10.1007/978-1-62703-260-5_8

    Article  CAS  PubMed  Google Scholar 

  25. Nair S, Archer GE, Tedder TF (2012) Isolation and generation of human dendritic cells. Curr Protoc Immunol 7(7):32. doi:10.1002/0471142735.im0732s99

    PubMed  Google Scholar 

  26. Blomberg K, Granberg C, Hemmila I, Lovgren T (1986) Europium-labelled target cells in an assay of natural killer cell activity. I. A novel non-radioactive method based on time-resolved fluorescence. J Immunol Methods 86(2):225–229

    Article  CAS  PubMed  Google Scholar 

  27. Liu R, Mitchell DA (2010) Survivin as an immunotherapeutic target for adult and pediatric malignant brain tumors. Cancer Immunol Immunother 59(2):183–193. doi:10.1007/s00262-009-0757-9

    Article  PubMed  Google Scholar 

  28. Jacobs JF, Hoogerbrugge PM, de Rakt MW, Aarntzen EH, Figdor CG, Adema GJ, de Vries IJ (2007) Phenotypic and functional characterization of mature dendritic cells from pediatric cancer patients. Pediatr Blood Cancer 49(7):924–927. doi:10.1002/pbc.21246

    Article  PubMed  Google Scholar 

  29. Vakkila J, Vettenranta K, Sariola H, Saarinen-Pihkala UM (2001) Poor yield of dendritic cell precursors from untreated pediatric cancer. J Hematother Stem Cell Res 10(6):787–793. doi:10.1089/152581601317210881

    Article  CAS  PubMed  Google Scholar 

  30. Shilyansky J, Jacobs P, Doffek K, Sugg SL (2007) Induction of cytolytic T lymphocytes against pediatric solid tumors in vitro using autologous dendritic cells pulsed with necrotic primary tumor. J Pediatr Surg 42(1):54–61. doi:10.1016/j.jpedsurg.2006.09.008

    Article  PubMed  Google Scholar 

  31. Ardon H, De Vleeschouwer S, Van Calenbergh F, Claes L, Kramm CM, Rutkowski S, Wolff JE, Van Gool SW (2010) Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours. Pediatr Blood Cancer 54(4):519–525. doi:10.1002/pbc.22319

    PubMed  Google Scholar 

  32. Geiger JD, Hutchinson RJ, Hohenkirk LF, McKenna EA, Yanik GA, Levine JE, Chang AE, Braun TM, Mule JJ (2001) Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res 61(23):8513–8519

    CAS  PubMed  Google Scholar 

  33. De Vleeschouwer S, Van Calenbergh F, Demaerel P, Flamen P, Rutkowski S, Kaempgen E, Wolff JE, Plets C, Sciot R, Van Gool SW (2004) Transient local response and persistent tumor control in a child with recurrent malignant glioma: treatment with combination therapy including dendritic cell therapy. Case report. J Neurosurg 100(5 Suppl Pediatrics):492–497. doi:10.3171/ped.2004.100.5.0492

    PubMed  Google Scholar 

  34. Lasky JL 3rd, Panosyan EH, Plant A, Davidson T, Yong WH, Prins RM, Liau LM, Moore TB (2013) Autologous tumor lysate-pulsed dendritic cell immunotherapy for pediatric patients with newly diagnosed or recurrent high-grade gliomas. Anticancer Res 33(5):2047–2056

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Rutkowski S, De Vleeschouwer S, Kaempgen E, Wolff JE, Kuhl J, Demaerel P, Warmuth-Metz M, Flamen P, Van Calenbergh F, Plets C, Sorensen N, Opitz A, Van Gool SW (2004) Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 91(9):1656–1662. doi:10.1038/sj.bjc.6602195

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Haberler C, Slavc I, Czech T, Gelpi E, Heinzl H, Budka H, Urban C, Scarpatetti M, Ebetsberger-Dachs G, Schindler C, Jones N, Klein-Franke A, Maier H, Jauk B, Kiefer A, Hainfellner JA (2006) Histopathological prognostic factors in medulloblastoma: high expression of survivin is related to unfavourable outcome. Eur J Cancer 42(17):2996–3003. doi:10.1016/j.ejca.2006.05.038

    Article  CAS  PubMed  Google Scholar 

  37. Fangusaro JR, Jiang Y, Holloway MP, Caldas H, Singh V, Boue DR, Hayes J, Altura RA (2005) Survivin, Survivin-2B, and Survivin-deItaEx3 expression in medulloblastoma: biologic markers of tumour morphology and clinical outcome. Br J Cancer 92(2):359–365. doi:10.1038/sj.bjc.6602317

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Bodey B, Bodey V, Siegel SE, Kaiser HE (2004) Survivin expression in childhood medulloblastomas: a possible diagnostic and prognostic marker. Vivo 18(6):713–718

    CAS  Google Scholar 

  39. Baryawno N, Rahbar A, Wolmer-Solberg N, Taher C, Odeberg J, Darabi A, Khan Z, Sveinbjornsson B, FuskevAg OM, Segerstrom L, Nordenskjold M, Siesjo P, Kogner P, Johnsen JI, Soderberg-Naucler C (2011) Detection of human cytomegalovirus in medulloblastomas reveals a potential therapeutic target. J Clin Invest 121(10):4043–4055. doi:10.1172/JCI57147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Department of Defense Clinical Trial Award W81XWH-10-1-0089 (DAM, SG, GG), the Pediatric Brain Tumor Foundation Institute at Duke University (DDB, JHS, DAM), and Specialized Program of Research Excellence in Brain Cancer 5P50-CA108786 (DDB, JHS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita K. Nair.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, S.K., Driscoll, T., Boczkowski, D. et al. Ex vivo generation of dendritic cells from cryopreserved, post-induction chemotherapy, mobilized leukapheresis from pediatric patients with medulloblastoma. J Neurooncol 125, 65–74 (2015). https://doi.org/10.1007/s11060-015-1890-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1890-2

Keywords

Navigation