Journal of Neuro-Oncology

, Volume 125, Issue 1, pp 65–74 | Cite as

Ex vivo generation of dendritic cells from cryopreserved, post-induction chemotherapy, mobilized leukapheresis from pediatric patients with medulloblastoma

  • Smita K. NairEmail author
  • Timothy Driscoll
  • David Boczkowski
  • Robert Schmittling
  • Renee Reynolds
  • Laura A. Johnson
  • Gerald Grant
  • Herbert Fuchs
  • Darell D. Bigner
  • John H. Sampson
  • Sridharan Gururangan
  • Duane A. Mitchell
Laboratory Investigation


Generation of patient-derived, autologous dendritic cells (DCs) is a critical component of cancer immunotherapy with ex vivo-generated, tumor antigen-loaded DCs. An important factor in the ability to generate DCs is the potential impact of prior therapies on DC phenotype and function. We investigated the ability to generate DCs using cells harvested from pediatric patients with medulloblastoma for potential evaluation of DC-RNA based vaccination approach in this patient population. Cells harvested from medulloblastoma patient leukapheresis following induction chemotherapy and granulocyte colony stimulating factor mobilization were cryopreserved prior to use in DC generation. DCs were generated from the adherent CD14+ monocytes using standard procedures and analyzed for cell recovery, phenotype and function. To summarize, 4 out of 5 patients (80 %) had sufficient monocyte recovery to permit DC generation, and we were able to generate DCs from 3 out of these 4 patient samples (75 %). Overall, we successfully generated DCs that met phenotypic requisites for DC-based cancer therapy from 3 out of 5 (60 %) patient samples and met both phenotypic and functional requisites from 2 out of 5 (40 %) patient samples. This study highlights the potential to generate functional DCs for further clinical treatments from refractory patients that have been heavily pretreated with myelosuppressive chemotherapy. Here we demonstrate the utility of evaluating the effect of the currently employed standard-of-care therapies on the ex vivo generation of DCs for DC-based clinical studies in cancer patients.


RNA-transfected dendritic cells Adoptive T cell therapy Pediatric brain tumors Medulloblastoma 



This work was supported by Grants from the Department of Defense Clinical Trial Award W81XWH-10-1-0089 (DAM, SG, GG), the Pediatric Brain Tumor Foundation Institute at Duke University (DDB, JHS, DAM), and Specialized Program of Research Excellence in Brain Cancer 5P50-CA108786 (DDB, JHS).

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Crawford J (2013) Childhood brain tumors. Pediatr Rev 34(2):63–78. doi: 10.1542/pir.34-2-63 CrossRefPubMedGoogle Scholar
  2. 2.
    Pollack IF, Jakacki RI (2011) Childhood brain tumors: epidemiology, current management and future directions. Nat Rev Neurol 7(9):495–506. doi: 10.1038/nrneurol.2011.110 CrossRefPubMedGoogle Scholar
  3. 3.
    Gajjar A, Chintagumpala M, Ashley D, Kellie S, Kun LE, Merchant TE, Woo S, Wheeler G, Ahern V, Krasin MJ, Fouladi M, Broniscer A, Krance R, Hale GA, Stewart CF, Dauser R, Sanford RA, Fuller C, Lau C, Boyett JM, Wallace D, Gilbertson RJ (2006) Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 7(10):813–820. doi: 10.1016/S1470-2045(06)70867-1 CrossRefPubMedGoogle Scholar
  4. 4.
    Gururangan S, McLaughlin C, Quinn J, Rich J, Reardon D, Halperin EC, Herndon J 2nd, Fuchs H, George T, Provenzale J, Watral M, McLendon RE, Friedman A, Friedman HS, Kurtzberg J, Vredenbergh J, Martin PL (2003) High-dose chemotherapy with autologous stem-cell rescue in children and adults with newly diagnosed pineoblastomas. J Clin Oncol 21(11):2187–2191. doi: 10.1200/JCO.2003.10.096 CrossRefPubMedGoogle Scholar
  5. 5.
    Packer RJ, Goldwein J, Nicholson HS, Vezina LG, Allen JC, Ris MD, Muraszko K, Rorke LB, Wara WM, Cohen BH, Boyett JM (1999) Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children’s Cancer Group Study. J Clin Oncol 17(7):2127–2136PubMedGoogle Scholar
  6. 6.
    Rutkowski S, von Hoff K, Emser A, Zwiener I, Pietsch T, Figarella-Branger D, Giangaspero F, Ellison DW, Garre ML, Biassoni V, Grundy RG, Finlay JL, Dhall G, Raquin MA, Grill J (2010) Survival and prognostic factors of early childhood medulloblastoma: an international meta-analysis. J Clin Oncol 28(33):4961–4968. doi: 10.1200/JCO.2010.30.2299 CrossRefPubMedGoogle Scholar
  7. 7.
    Wolff JE, Driever PH, Erdlenbruch B, Kortmann RD, Rutkowski S, Pietsch T, Parker C, Metz MW, Gnekow A, Kramm CM (2010) Intensive chemotherapy improves survival in pediatric high-grade glioma after gross total resection: results of the HIT-GBM-C protocol. Cancer 116(3):705–712. doi: 10.1002/cncr.24730 CrossRefPubMedGoogle Scholar
  8. 8.
    Chandramohan V, Mitchell DA, Johnson LA, Sampson JH, Bigner DD (2013) Antibody, T-cell and dendritic cell immunotherapy for malignant brain tumors. Future Oncol 9(7):977–990. doi: 10.2217/fon.13.47 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Eyrich M, Rachor J, Schreiber SC, Wolfl M, Schlegel PG (2013) Dendritic cell vaccination in pediatric gliomas: lessons learnt and future perspectives. Front Pediatr 1:12. doi: 10.3389/fped.2013.00012 PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Ahn BJ, Pollack IF, Okada H (2013) Immune-checkpoint blockade and active immunotherapy for glioma. Cancers (Basel) 5(4):1379–1412. doi: 10.3390/cancers5041379 CrossRefGoogle Scholar
  11. 11.
    Jackson CM, Lim M, Drake CG (2014) Immunotherapy for brain cancer: recent progress and future promise. Clin Cancer Res. doi: 10.1158/1078-0432.CCR-13-2057 PubMedCentralGoogle Scholar
  12. 12.
    Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296. doi: 10.1146/annurev.iy.09.040191.001415 CrossRefPubMedGoogle Scholar
  13. 13.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252CrossRefPubMedGoogle Scholar
  14. 14.
    Boczkowski D, Nair SK, Snyder D, Gilboa E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184(2):465–472CrossRefPubMedGoogle Scholar
  15. 15.
    Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E (1998) Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 16(4):364–369. doi: 10.1038/nbt0498-364 CrossRefPubMedGoogle Scholar
  16. 16.
    Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS, Vieweg J, Gilboa E (2000) Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 6(9):1011–1017. doi: 10.1038/79519 CrossRefPubMedGoogle Scholar
  17. 17.
    Nair SK, Morse M, Boczkowski D, Cumming RI, Vasovic L, Gilboa E, Lyerly HK (2002) Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg 235(4):540–549PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Nair SK, De Leon G, Boczkowski D, Schmittling R, Xie W, Staats J, Liu R, Johnson LA, Weinhold K, Archer GE, Sampson JH, Mitchell DA (2014) Recognition and killing of autologous, primary glioblastoma tumor cells by human cytomegalovirus pp65-specific cytotoxic T cells. Clin Cancer Res 20(10):2684–2694. doi: 10.1158/1078-0432.CCR-13-3268 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Caruso DA, Orme LM, Neale AM, Radcliff FJ, Amor GM, Maixner W, Downie P, Hassall TE, Tang ML, Ashley DM (2004) Results of a phase 1 study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro Oncol 6(3):236–246. doi: 10.1215/S1152851703000668 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Nair S, Boczkowski D, Pruitt S, Urban J (2011) RNA in cancer vaccine therapy. In: Bot A, Obrocea M, Marincola FM (eds) Cancer vaccines: from research to clinical practice editors, 1st edn. Informa Healthcare, Geneva, pp 217–231CrossRefGoogle Scholar
  21. 21.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422. doi: 10.1056/NEJMoa1001294 CrossRefPubMedGoogle Scholar
  22. 22.
    Boczkowski D, Nair SK, Nam JH, Lyerly HK, Gilboa E (2000) Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res 60(4):1028–1034PubMedGoogle Scholar
  23. 23.
    Nair SK, De Leon G, Boczkowski D, Schmittling R, Xie W, Staats J, Liu R, Johnson LA, Weinhold K, Archer GE, Sampson JH, Mitchell DA (2014) Recognition and killing of autologous, primary glioblastoma tumor cells by human cytomegalovirus pp65-specific cytotoxic T cells. Clin Cancer Res. doi: 10.1158/1078-0432.CCR-13-3268 Google Scholar
  24. 24.
    Lee J, Boczkowski D, Nair S (2013) Programming human dendritic cells with mRNA. Methods Mol Biol 969:111–125. doi: 10.1007/978-1-62703-260-5_8 CrossRefPubMedGoogle Scholar
  25. 25.
    Nair S, Archer GE, Tedder TF (2012) Isolation and generation of human dendritic cells. Curr Protoc Immunol 7(7):32. doi: 10.1002/0471142735.im0732s99 PubMedGoogle Scholar
  26. 26.
    Blomberg K, Granberg C, Hemmila I, Lovgren T (1986) Europium-labelled target cells in an assay of natural killer cell activity. I. A novel non-radioactive method based on time-resolved fluorescence. J Immunol Methods 86(2):225–229CrossRefPubMedGoogle Scholar
  27. 27.
    Liu R, Mitchell DA (2010) Survivin as an immunotherapeutic target for adult and pediatric malignant brain tumors. Cancer Immunol Immunother 59(2):183–193. doi: 10.1007/s00262-009-0757-9 CrossRefPubMedGoogle Scholar
  28. 28.
    Jacobs JF, Hoogerbrugge PM, de Rakt MW, Aarntzen EH, Figdor CG, Adema GJ, de Vries IJ (2007) Phenotypic and functional characterization of mature dendritic cells from pediatric cancer patients. Pediatr Blood Cancer 49(7):924–927. doi: 10.1002/pbc.21246 CrossRefPubMedGoogle Scholar
  29. 29.
    Vakkila J, Vettenranta K, Sariola H, Saarinen-Pihkala UM (2001) Poor yield of dendritic cell precursors from untreated pediatric cancer. J Hematother Stem Cell Res 10(6):787–793. doi: 10.1089/152581601317210881 CrossRefPubMedGoogle Scholar
  30. 30.
    Shilyansky J, Jacobs P, Doffek K, Sugg SL (2007) Induction of cytolytic T lymphocytes against pediatric solid tumors in vitro using autologous dendritic cells pulsed with necrotic primary tumor. J Pediatr Surg 42(1):54–61. doi: 10.1016/j.jpedsurg.2006.09.008 CrossRefPubMedGoogle Scholar
  31. 31.
    Ardon H, De Vleeschouwer S, Van Calenbergh F, Claes L, Kramm CM, Rutkowski S, Wolff JE, Van Gool SW (2010) Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours. Pediatr Blood Cancer 54(4):519–525. doi: 10.1002/pbc.22319 PubMedGoogle Scholar
  32. 32.
    Geiger JD, Hutchinson RJ, Hohenkirk LF, McKenna EA, Yanik GA, Levine JE, Chang AE, Braun TM, Mule JJ (2001) Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res 61(23):8513–8519PubMedGoogle Scholar
  33. 33.
    De Vleeschouwer S, Van Calenbergh F, Demaerel P, Flamen P, Rutkowski S, Kaempgen E, Wolff JE, Plets C, Sciot R, Van Gool SW (2004) Transient local response and persistent tumor control in a child with recurrent malignant glioma: treatment with combination therapy including dendritic cell therapy. Case report. J Neurosurg 100(5 Suppl Pediatrics):492–497. doi: 10.3171/ped.2004.100.5.0492 PubMedGoogle Scholar
  34. 34.
    Lasky JL 3rd, Panosyan EH, Plant A, Davidson T, Yong WH, Prins RM, Liau LM, Moore TB (2013) Autologous tumor lysate-pulsed dendritic cell immunotherapy for pediatric patients with newly diagnosed or recurrent high-grade gliomas. Anticancer Res 33(5):2047–2056PubMedCentralPubMedGoogle Scholar
  35. 35.
    Rutkowski S, De Vleeschouwer S, Kaempgen E, Wolff JE, Kuhl J, Demaerel P, Warmuth-Metz M, Flamen P, Van Calenbergh F, Plets C, Sorensen N, Opitz A, Van Gool SW (2004) Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 91(9):1656–1662. doi: 10.1038/sj.bjc.6602195 PubMedCentralPubMedGoogle Scholar
  36. 36.
    Haberler C, Slavc I, Czech T, Gelpi E, Heinzl H, Budka H, Urban C, Scarpatetti M, Ebetsberger-Dachs G, Schindler C, Jones N, Klein-Franke A, Maier H, Jauk B, Kiefer A, Hainfellner JA (2006) Histopathological prognostic factors in medulloblastoma: high expression of survivin is related to unfavourable outcome. Eur J Cancer 42(17):2996–3003. doi: 10.1016/j.ejca.2006.05.038 CrossRefPubMedGoogle Scholar
  37. 37.
    Fangusaro JR, Jiang Y, Holloway MP, Caldas H, Singh V, Boue DR, Hayes J, Altura RA (2005) Survivin, Survivin-2B, and Survivin-deItaEx3 expression in medulloblastoma: biologic markers of tumour morphology and clinical outcome. Br J Cancer 92(2):359–365. doi: 10.1038/sj.bjc.6602317 PubMedCentralPubMedGoogle Scholar
  38. 38.
    Bodey B, Bodey V, Siegel SE, Kaiser HE (2004) Survivin expression in childhood medulloblastomas: a possible diagnostic and prognostic marker. Vivo 18(6):713–718Google Scholar
  39. 39.
    Baryawno N, Rahbar A, Wolmer-Solberg N, Taher C, Odeberg J, Darabi A, Khan Z, Sveinbjornsson B, FuskevAg OM, Segerstrom L, Nordenskjold M, Siesjo P, Kogner P, Johnsen JI, Soderberg-Naucler C (2011) Detection of human cytomegalovirus in medulloblastomas reveals a potential therapeutic target. J Clin Invest 121(10):4043–4055. doi: 10.1172/JCI57147 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Smita K. Nair
    • 1
    • 4
    Email author
  • Timothy Driscoll
    • 2
  • David Boczkowski
    • 1
  • Robert Schmittling
    • 1
  • Renee Reynolds
    • 1
    • 5
  • Laura A. Johnson
    • 1
    • 6
  • Gerald Grant
    • 1
    • 7
  • Herbert Fuchs
    • 1
    • 2
    • 4
  • Darell D. Bigner
    • 1
    • 3
    • 4
  • John H. Sampson
    • 1
    • 3
    • 4
  • Sridharan Gururangan
    • 1
    • 2
    • 4
  • Duane A. Mitchell
    • 1
    • 4
    • 8
  1. 1.Department of SurgeryDuke University School of MedicineDurhamUSA
  2. 2.Department of PediatricsDuke University School of MedicineDurhamUSA
  3. 3.Department of PathologyDuke University School of MedicineDurhamUSA
  4. 4.Preston Robert Tisch Brain Tumor CenterDurhamUSA
  5. 5.Department of NeurosurgeryUniversity of BuffaloBuffaloUSA
  6. 6.Abramson Family Cancer Research Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  7. 7.Pediatric NeurosurgeryStanford University School of MedicinePalo AltoUSA
  8. 8.Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor TherapyUniversity of FloridaGainesvilleUSA

Personalised recommendations