Skip to main content
Log in

The role of regulatory T cells and microglia in glioblastoma-associated immunosuppression

  • Editors' Invited Manuscript
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Cell-mediated suppression of anti-tumor immunity is multifactorial in patients with cancer, and recent studies have focused on several distinct cellular agents that are associated with this phenomenon. This review will focus on the potential role of regulatory T cells (Tregs) and microglia in the suppression of cellular immunity observed in patients with glioblastoma. We discuss the ontogeny, basic biology, evidence for activity, and potential clinical options for targeting Tregs and microglia as part of immunotherapy in affected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beyer M, Schultze JL (2006) Regulatory T cells in cancer. Blood 108:804–811

    Article  CAS  PubMed  Google Scholar 

  2. Paust S, Lu L, McCarty N, Cantor H (2004) Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci USA 101:10398–10403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Whiteside T (2012) What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol 22:327–334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Ebert LM, Tan BS, Browning J et al (2008) The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res 68:3001–3009

    Article  CAS  PubMed  Google Scholar 

  5. Fontenot JD, Gavin MA, Rudensky AY. (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336.

    Article  Google Scholar 

  6. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  CAS  PubMed  Google Scholar 

  7. Read S, Malmstrom V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192:295–302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Takahashi T, Tagami T, Yamazaki S et al (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192:303–310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Whiteside TL, Schuler P, Schilling B (2012) Induced and natural regulatory T cells in human cancer. Expert Opin Biol Ther 12:1383–1397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. von Boehmer H (2005) Mechanisms of suppression by suppressor T cells. Nat Immunol 6:338–344

    Article  Google Scholar 

  11. Grossman WJ, Verbsky JW, Barchet W et al (2004) Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21:589–601

    Article  CAS  PubMed  Google Scholar 

  12. Wainwright DA, Balyasnikova IV, Chang AL et al (2012) IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res 18:6110–6121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Hara M, Kingsley CI, Niimi M et al (2001) IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol 166:3789–3796

    Article  CAS  PubMed  Google Scholar 

  14. Nakamura K, Kitani A, Strober W (2001) Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194:629–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Elkord E, Sharma S, Burt DJ, Hawkins RE (2011) Expanded subpopulation of FoxP3+ T regulatory cells in renal cell carcinoma co-express helios, indicating they could be derived from natural but not induced Tregs. Clin Immunol 140:218–222

    Article  CAS  PubMed  Google Scholar 

  16. Wainwright DA, Sengupta S, Han Y, Lesniak MS (2011) Thymus-derived rather than tumor-induced regulatory T cells predominate in brain tumors. Neuro Oncol 13:1308–1323

    Article  PubMed Central  PubMed  Google Scholar 

  17. Alizadeh D, Katsanis E, Larmonier N (2013) The multifaceted role of Th17 lymphocytes and their associated cytokines in cancer. Clin Dev Immunol 2013:1–11

    Article  Google Scholar 

  18. Duan MC, Zhong XN, Liu GN, Wei JR (2014) The Treg/Th17 paradigm in lung cancer. J Immunol Res 2014:1−9

  19. Koenen HJ, Smeets RL, Vink PM, van Rijssen E, Boots AM, Joosten I (2008) Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112(6):2340–2352

  20. Zhou L, Lopes JE, Chong MM et al (2008) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453:236–240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Yang XO, Nurieva R, Martinez GJ et al (2008) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29:44–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Fecci PE, Mitchell DA, Whitesides JF et al (2006) Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 66:3294–3302

    Article  CAS  PubMed  Google Scholar 

  23. El Andaloussi A, Lesniak MS (2006) An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro Oncol 8:234–243

    Article  PubMed Central  PubMed  Google Scholar 

  24. Waziri A, Killory B, Ogden AT et al (2008) Preferential in situ CD4+CD56+ T cell activation and expansion within human glioblastoma. J Immunol 180:7673–7680

    Article  CAS  PubMed  Google Scholar 

  25. Lohr J, Ratliff T, Huppertz A et al (2011) Effector T-cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-β. Clin Cancer Res 17:4296–4308

    Article  CAS  PubMed  Google Scholar 

  26. Heimberger AB, Abou-Ghazal M, Reina-Ortiz C et al (2008) Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res 14:5166–5172

    Article  CAS  PubMed  Google Scholar 

  27. El Andaloussi A, Lesniak MS (2007) CD4+CD25+FoxP3+ T-cell infiltration and heme oxygenase-1 expression correlate with tumor grade in human gliomas. J Neurononcol 83:145–152

    Article  Google Scholar 

  28. Jacobs JF, Idema AJ, Bok KF et al (2010) Prognostic significance and mechanisms of Treg infiltration in human brain tumors. J Neuroimmunol 225:195–199

    Article  CAS  PubMed  Google Scholar 

  29. Fadul CE, Fisher JL, Gui J et al (2011) Immune modulation effects of concomitant temozolomide and radiation therapy on peripheral blood mononuclear cells in patients with glioblastoma multiforme. Neuro Oncol 13:393–400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sampson JH, Aldape KD, Archer GE et al (2011) Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol 13:324–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zeng J, See AP, Phallen J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86:343–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Curtin JF, Candolfi M, Fakhouri TM et al (2008) Treg depletion inhibits efficacy of cancer immunotherapy: implications for clinical trials. PLoS One 3:e1983

    Article  PubMed Central  PubMed  Google Scholar 

  33. Rech AJ, Mick R, Martin S, et al. (2012) CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci Transl Med 4:134ra62.

  34. Jacobs JF, Punt CJ, Lesterhuis WJ et al (2010) Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin Cancer Res 16:5067–5078

    Article  CAS  PubMed  Google Scholar 

  35. Sampson JH, Schmittling RJ, Archer GE et al (2012) A pilot study of IL-2Ra blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma. PLoS One 7:e31046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Turturro F (2007) Denileukin diftitox: a biotherapeutic paradigm shift in the treatment of lymphoid-derived disorders. Expert Rev Anticancer Ther 7:11–17

    Article  CAS  PubMed  Google Scholar 

  37. Wainwright DA, Chang AL, Dey M et al (2014) Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res 20:5290–5301

  38. Bronte V (2009) Myeloid-derived suppressor cells in inflammation: uncovering cell subsets with enhanced immunosuppressive functions. Eur J Immunol 39:2670–2672

    Article  CAS  PubMed  Google Scholar 

  39. Almand B, Clark JI, Nikitina E et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689

    Article  CAS  PubMed  Google Scholar 

  40. Kusmartsev S, Su Z, Heiser A et al (2008) Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 14:8270–8278

    Article  CAS  PubMed  Google Scholar 

  41. Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70:4335–4345

    Article  CAS  PubMed  Google Scholar 

  42. Mirza N, Fishman M, Fricke I et al (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66:9299–9307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Galdiero MR, Bonavita E, Barajon I et al (2013) Tumor associated macrophages and neutrophils in cancer. Immunobiology 218:1402–1410

    Article  CAS  PubMed  Google Scholar 

  44. Peranzoni E, Zilio S, Marigo I et al (2010) Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol 22:238–244

    Article  CAS  PubMed  Google Scholar 

  45. Sippel TR, White J, Nag K et al (2011) Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular immune function by targeting arginase I. Clin Cancer Res 17:6992–7002

    Article  CAS  PubMed  Google Scholar 

  46. Gustafson MP, Lin Y, New KC et al (2010) Systemic immune suppression in glioblastoma: the interplay between CD14+HLA-DRlo/neg monocytes, tumor factors, and dexamethasone. Neuro Oncol 12:631–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Raychaudhuri B, Rayman P, Ireland J et al (2011) Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro Oncol 13:591–599

    Article  PubMed Central  PubMed  Google Scholar 

  48. da Fonseca AC, Badie B (2013) Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies. Clin Dev Immunol 2013:264124

    PubMed  Google Scholar 

  49. Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  CAS  PubMed  Google Scholar 

  50. Wang N, Liang H, Zen K (2014) Molecular mechanisms that influence the macrophage m1–m2 polarization balance. Front Immunol 5:614

    PubMed Central  PubMed  Google Scholar 

  51. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

  52. Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  CAS  PubMed  Google Scholar 

  53. Dailey ME, Waite M (1999) Confocal imaging of microglial cell dynamics in hippocampal slice cultures. Methods 18:222–30

  54. Kurpius D, Nolley EP, Dailey ME (2007) Purines induce directed migration and rapid homing of microglia to injured pyramidal neurons in developing hippocampus. Glia 5:873–884

  55. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T (2013) Origin and differentiation of microglia. Front Cell Neurosci 7:45

    Article  PubMed Central  PubMed  Google Scholar 

  56. Aloisi F, De Simone R, Columba-Cabezas S, Penna G, Adorini LB (2000) Functional maturation of adult mouse resting microglia into an APC is promoted by granulocyte-macrophage colony-stimulating factor and interaction with Th1 cells. J Immunol 164:1705–1712

  57. Lynch MA (2009) The multifaceted profile of activated microglia. Mol Neurobiol 40:139–156

    Article  CAS  PubMed  Google Scholar 

  58. Graeber MB, Scheithauer BW, Kreutzberg GW (2002) Microglia in brain tumors. Glia 40:252–259

  59. Parker JJ, Dionne KR, Massarwa R et al (2013) Gefitinib selectively inhibits tumor cell migration in EGFR-amplified human glioblastoma. Neuro Oncol 15:1048–1057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Facoetti A, Nano R, Zelini P et al (2005) Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin Cancer Res 11:8304–8311

    Article  CAS  PubMed  Google Scholar 

  61. Kostianovsky AM, Maier LM, Anderson RC, Bruce JN, Anderson DE (2008) Astrocytic regulation of human monocytic/microglial activation. J Immunol 181:5425–5432

    Article  CAS  PubMed  Google Scholar 

  62. Badie B, Schartner J, Prabakaran S, Paul J, Vorpahl JB (2001) Expression of Fas ligand by microglia: possible role in glioma immune evasion. J Neuroimmunol 120:19–24

  63. Rodrigues JC, Gonzalez GC, Zhang L et al (2010) Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro Oncol 12:351–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Kortylewski M, Yu H (2008) Role of Stat3 in suppressing anti-tumor immunity. Curr Opin Immunol 20:228–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Abou-Ghazal M, Yang DS, Qiao W et al (2008) The incidence, correlation with tumor-infiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas. Clin Cancer Res 14:8228–8235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Wu A, Wei J, Kong LY et al (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 12:1113–1125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Zhang L, Alizadeh D, Van Handel M et al (2009) Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia 57:1458–1467

    Article  PubMed  Google Scholar 

  68. Wei J, Barr J, Kong LY et al (2010) Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther 9:67–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Wei J, Wang F, Kong LY et al (2013) miR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma. Cancer Res 73:3913–3926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Zhao D, Alizadeh D, Zhang L et al (2011) Carbon nanotubes enhance CpG uptake and potentiate antiglioma immunity. Clin Cancer Res 17:771–782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Allavena P, Mantovani A (2012) Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol 167:195–205

  72. Cunningham CL, Martínez-Cerdeño V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci. 33:4216–4233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen Waziri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

See, A.P., Parker, J.J. & Waziri, A. The role of regulatory T cells and microglia in glioblastoma-associated immunosuppression. J Neurooncol 123, 405–412 (2015). https://doi.org/10.1007/s11060-015-1849-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1849-3

Keywords

Navigation