Skip to main content

Advertisement

Log in

Selection of suitable reference genes for expression analysis in human glioma using RT-qPCR

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

In human glioma research, quantitative real-time reverse-transcription PCR is a frequently used tool. Considering the broad variation in the expression of candidate reference genes among tumor stages and normal brain, studies using quantitative RT-PCR require strict definition of adequate endogenous controls. This study aimed at testing a panel of nine reference genes [beta-2-microglobulin, cytochrome c-1 (CYC1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethylbilane synthase, hypoxanthine guanine phosphoribosyl transferase 1, ribosomal protein L13a (RPL13A), succinate dehydrogenase, TATA-box binding protein and 14-3-3 protein zeta] to identify and validate the most suitable reference genes for expression studies in human glioma of different grades (World Health Organization grades II–IV). After analysis of the stability values calculated using geNorm, NormFinder, and BestKeeper algorithms, GAPDH, RPL13A, and CYC1 can be indicated as reference genes applicable for accurate normalization of gene expression in glioma compared with normal brain and anaplastic astrocytoma or glioblastoma alone within this experimental setting. Generally, there are no differences in expression levels and variability of candidate genes in glioma tissue compared to normal brain. But stability analyses revealed just a small number of genes suitable for normalization in each of the tumor subgroups and across these groups. Nevertheless, our data show the importance of validation of adequate reference genes prior to every study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. doi:10.1007/s00401-007-0243-4

    Article  PubMed Central  PubMed  Google Scholar 

  2. Appin CL, Brat DJ (2014) Molecular genetics of gliomas. Cancer J 20:66–72. doi:10.1097/PPO.0000000000000020

    Article  CAS  PubMed  Google Scholar 

  3. Yin AA, Cheng JX, Zhang X, Liu BL (2013) The treatment of glioblastomas: a systematic update on clinical Phase III trials. Crit Rev Oncol Hematol 87:265–282. doi:10.1016/j.critrevonc.2013.01.007

    Article  PubMed  Google Scholar 

  4. Sami A, Karsy M (2013) Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: novel therapeutic agents and advances in understanding. Tumour Biol 34:1991–2002. doi:10.1007/s13277-013-0800-5

    Article  CAS  PubMed  Google Scholar 

  5. Rinne ML, Lee EQ, Nayak L, Norden AD, Beroukhim R, Wen PY, Reardon DA (2013) Update on bevacizumab and other angiogenesis inhibitors for brain cancer. Expert Opin Emerg Drugs 18:137–153. doi:10.1517/14728214.2013.794784

    Article  CAS  PubMed  Google Scholar 

  6. Reardon DA, Wucherpfennig KW, Freeman G, Wu CJ, Chiocca EA, Wen PY, Curry WT Jr, Mitchell DA, Fecci PE, Sampson JH, Dranoff G (2013) An update on vaccine therapy and other immunotherapeutic approaches for glioblastoma. Expert Rev Vaccines 12:597–615. doi:10.1586/erv.13.41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Akiyama Y, Komiyama M, Miyata H, Yagoto M, Ashizawa T, Iizuka A, Oshita C, Kume A, Nogami M, Ito I, Watanabe R, Sugino T, Mitsuya K, Hayashi N, Nakasu Y, Yamaguchi K (2014) Novel cancer-testis antigen expression on glioma cell lines derived from high-grade glioma patients. Oncol Rep 31:1683–1690. doi:10.3892/or.2014.3049

    PubMed  Google Scholar 

  8. Wang X, Sheng P, Guo X, Wang J, Hou L, Hu G, Luo C, Dong Y, Lu Y (2013) Identification and expression of a novel MDM4 splice variant in human glioma. Brain Res 1537:260–266. doi:10.1016/j.brainres.2013.07.054

    Article  CAS  PubMed  Google Scholar 

  9. de Tayrac M, Aubry M, Saikali S, Etcheverry A, Surbled C, Guenot F, Galibert MD, Hamlat A, Lesimple T, Quillien V, Menei P, Mosser J (2011) A 4-gene signature associated with clinical outcome in high-grade gliomas. Clin Cancer Res 17:317–327. doi:10.1158/1078-0432.CCR-10-1126

    Article  PubMed  Google Scholar 

  10. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582. doi:10.1038/nprot.2006.236

    Article  CAS  PubMed  Google Scholar 

  11. Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39:75–85

    Article  CAS  PubMed  Google Scholar 

  12. Dundas J, Ling M (2012) Reference genes for measuring mRNA expression. Theory Biosci 131:215–223. doi:10.1007/s12064-012-0152-5

    Article  CAS  PubMed  Google Scholar 

  13. Kreth S, Heyn J, Grau S, Kretzschmar HA, Egensperger R, Kreth FW (2010) Identification of valid endogenous control genes for determining gene expression in human glioma. Neuro Oncol 12:570–579. doi:10.1093/neuonc/nop072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Gresner SM, Golanska E, Kulczycka-Wojdala D, Jaskolski DJ, Papierz W, Liberski PP (2011) Selection of reference genes for gene expression studies in astrocytomas. Anal Biochem 408:163–165. doi:10.1016/j.ab.2010.09.010

    Article  CAS  PubMed  Google Scholar 

  15. Valente V, Teixeira SA, Neder L, Okamoto OK, Oba-Shinjo SM, Marie SK, Scrideli CA, Paco-Larson ML, Carlotti CG Jr (2009) Selection of suitable housekeeping genes for expression analysis in glioblastoma using quantitative RT-PCR. BMC Mol Biol 10:17. doi:10.1186/1471-2199-10-17

    Article  PubMed Central  PubMed  Google Scholar 

  16. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):RESEARCH0034

    Article  PubMed Central  PubMed  Google Scholar 

  18. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi:10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  19. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  20. Zhong H, Simons JW (1999) Direct comparison of GAPDH, beta-actin, cyclophilin, and 28S rRNA as internal standards for quantifying RNA levels under hypoxia. Biochem Biophys Res Commun 259:523–526. doi:10.1006/bbrc.1999.0815

    Article  CAS  PubMed  Google Scholar 

  21. Glare EM, Divjak M, Bailey MJ, Walters EH (2002) beta-Actin and GAPDH housekeeping gene expression in asthmatic airways is variable and not suitable for normalising mRNA levels. Thorax 57:765–770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Tricarico C, Pinzani P, Bianchi S, Paglierani M, Distante V, Pazzagli M, Bustin SA, Orlando C (2002) Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem 309:293–300

    Article  CAS  PubMed  Google Scholar 

  23. de Kok JB, Roelofs RW, Giesendorf BA, Pennings JL, Waas ET, Feuth T, Swinkels DW, Span PN (2005) Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest 85:154–159. doi:10.1038/labinvest.3700208

    Article  PubMed  Google Scholar 

  24. Ohl F, Jung M, Xu C, Stephan C, Rabien A, Burkhardt M, Nitsche A, Kristiansen G, Loening SA, Radonic A, Jung K (2005) Gene expression studies in prostate cancer tissue: which reference gene should be selected for normalization? J Mol Med (Berl) 83:1014–1024. doi:10.1007/s00109-005-0703-z

    Article  CAS  Google Scholar 

  25. de Jonge HJ, Fehrmann RS, de Bont ES, Hofstra RM, Gerbens F, Kamps WA, de Vries EG, van der Zee AG, te Meerman GJ, ter Elst A (2007) Evidence based selection of housekeeping genes. PLoS ONE 2:e898. doi:10.1371/journal.pone.0000898

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Grube.

Additional information

Susanne Grube and Tatjana Göttig authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grube, S., Göttig, T., Freitag, D. et al. Selection of suitable reference genes for expression analysis in human glioma using RT-qPCR. J Neurooncol 123, 35–42 (2015). https://doi.org/10.1007/s11060-015-1772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1772-7

Keywords

Navigation