Journal of Neuro-Oncology

, Volume 122, Issue 3, pp 497–505 | Cite as

MRI perfusion measurements calculated using advanced deconvolution techniques predict survival in recurrent glioblastoma treated with bevacizumab

  • Robert J. Harris
  • Timothy F. Cloughesy
  • Anthony J. Hardy
  • Linda M. Liau
  • Whitney B. Pope
  • Phioanh L. Nghiemphu
  • Albert Lai
  • Benjamin M. Ellingson
Clinical Study


Bevacizumab is a therapeutic drug used in treatment of recurrent glioblastoma to inhibit angiogenesis. Treatment response is often monitored through the use of perfusion MRI measures of cerebral blood volume, flow, and other pharmacokinetic parameters; however, most methods for deriving these perfusion parameters can produce errors depending on bolus kinetics. Recently, a number of new methods have been developed to overcome these challenges. In the current study we examine cerebral blood volume and blood flow characteristics in 45 recurrent glioblastoma patients before and after treatment with bevacizumab. Perfusion MRI data was processed using a standard single value decomposition (SVD) technique, two block-circulant SVD techniques, and a Bayesian estimation technique. A proportional hazards model showed that patients with a large decrease in relative blood volume (RBV) after treatment had extended overall survival (P = 0.0048). Patients with large pre-treatment relative blood flow (RBF) showed extended progression-free survival (P = 0.0216) and overall survival (P = 0.0112), and patients with a large decrease in RBF following treatment showed extended overall survival (P = 0.0049). These results provide evidence that blood volume and blood flow measurements can be used as biomarkers in patients treated with bevacizumab.


DSC-MRI CBV CBF MTT Deconvolution Glioblastoma 



National Brain Tumor Society Research Grant (BME, TFC); NIH/NCI 1 R21 CA167354-01 (BME); UCLA Institute for Molecular Medicine Seed Grant (BME); UCLA Radiology Exploratory Research Grant (BME); University of California Cancer Research Coordinating Committee Grant (BME); ACRIN Young Investigator Initiative Grant (BME); Art of the Brain (TFC); Ziering Family Foundation in memory of Sigi Ziering (TFC); Singleton Family Foundation (TFC); and Clarance Klein Fund for Neuro-Oncology (TFC).

Conflict of interest

Drs. Timothy F. Cloughesy, Albert Lai, Whitney Pope, and Benjamin Ellingson are paid consultants for Genentech, Inc., and Hoffman-La Roche, Ltd. Drs. Ellingson and Pope are also a paid consultant for MedQIA, LLC.


  1. 1.
    Becker KP, Yu J (2012) Status quo–standard-of-care medical and radiation therapy for glioblastoma. Cancer J 18:12–19CrossRefPubMedGoogle Scholar
  2. 2.
    Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol 14(Suppl 5):v1–49CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Johnson DR, O’Neill BP (2012) Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol 107:359–364CrossRefPubMedGoogle Scholar
  4. 4.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G: radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMedGoogle Scholar
  5. 5.
    Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998CrossRefPubMedGoogle Scholar
  6. 6.
    Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A (1994) Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367:576–579CrossRefPubMedGoogle Scholar
  7. 7.
    Plate KH, Breier G, Risau W (1994) Molecular mechanisms of developmental and tumor angiogenesis. Brain Pathol 4:207–218CrossRefPubMedGoogle Scholar
  8. 8.
    Young RJ, Gupta A, Shah AD, Graber JJ, Chan TA, Zhang Z, Shi W, Beal K, Omuro AM (2013) MRI perfusion in determining pseudoprogression in patients with glioblastoma. Clin Imaging 37:41–49CrossRefPubMedGoogle Scholar
  9. 9.
    Server A, Orheim TE, Graff BA, Josefsen R, Kumar T, Nakstad PH (2011) Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis. Neuroradiology 53:319–330CrossRefPubMedGoogle Scholar
  10. 10.
    Ulmer S, Liess C, Kesari S, Otto N, Straube T, Jansen O (2009) Use of dynamic susceptibility-contrast MRI (DSC-MRI) to assess perfusion changes in the ipsilateral brain parenchyma from glioblastoma. J Neurooncol 91:213–220CrossRefPubMedGoogle Scholar
  11. 11.
    Young R, Babb J, Law M, Pollack E, Johnson G (2007) Comparison of region-of-interest analysis with three different histogram analysis methods in the determination of perfusion metrics in patients with brain gliomas. J Magn Reson Imaging 26:1053–1063CrossRefPubMedGoogle Scholar
  12. 12.
    Ulmer S, Hartwigsen G, Riedel C, Jansen O, Mehdorn HM, Nabavi A (2010) Intraoperative dynamic susceptibility contrast MRI (iDSC-MRI) is as reliable as preoperatively acquired perfusion mapping. Neuroimage 49:2158–2162CrossRefPubMedGoogle Scholar
  13. 13.
    Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM, Harsh GR, Cosgrove GR, Halpern EF, Hochberg FH et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51CrossRefPubMedGoogle Scholar
  14. 14.
    Maeda M, Itoh S, Kimura H, Iwasaki T, Hayashi N, Yamamoto K, Ishii Y, Kubota T (1993) Tumor vascularity in the brain: evaluation with dynamic susceptibility-contrast MR imaging. Radiology 189:233–238CrossRefPubMedGoogle Scholar
  15. 15.
    Boxerman JL, Schmainda KM, Weisskoff RM (2006) Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 27:859–867PubMedGoogle Scholar
  16. 16.
    Law M, Oh S, Babb JS, Wang E, Inglese M, Zagzag D, Knopp EA, Johnson G (2006) Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging–prediction of patient clinical response. Radiology 238:658–667CrossRefPubMedGoogle Scholar
  17. 17.
    Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 44:466–473CrossRefPubMedGoogle Scholar
  18. 18.
    Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG (2003) Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 50:164–174CrossRefPubMedGoogle Scholar
  19. 19.
    Liu HL, Pu Y, Liu Y, Nickerson L, Andrews T, Fox PT, Gao JH (1999) Cerebral blood flow measurement by dynamic contrast MRI using singular value decomposition with an adaptive threshold. Magn Reson Med 42:167–172CrossRefPubMedGoogle Scholar
  20. 20.
    Boutelier T, Kudo K, Pautot F, Sasaki M (2012) Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging. IEEE Trans Med Imaging 31:1381–1395CrossRefPubMedGoogle Scholar
  21. 21.
    Kudo K, Boutelier T, Pautot F, Honjo K, Hu JQ, Wang HB, Shintaku K, Uwano I, Sasaki M (2014) Bayesian analysis of perfusion-weighted imaging to predict infarct volume: comparison with singular value decomposition. Magn Reson Med Sci 13:45–50CrossRefPubMedGoogle Scholar
  22. 22.
    Sasaki M, Kudo K, Boutelier T, Pautot F, Christensen S, Uwano I, Goodwin J, Higuchi S, Ito K, Yamashita F (2013) Assessment of the accuracy of a Bayesian estimation algorithm for perfusion CT by using a digital phantom. Neuroradiology 55:1197–1203CrossRefPubMedGoogle Scholar
  23. 23.
    Ellingson BM, Kim HJ, Woodworth DC, Pope WB, Cloughesy JN, Harris RJ, Lai A, Nghiemphu PL, Cloughesy TF (2013) Recurrent glioblastoma treated with bevacizumab: contrast-enhanced T1-weighted subtraction maps improve tumor delineation and aid prediction of survival in a multicenter clinical trial. Radiology 271:200–210CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Mouridsen K, Christensen S, Gyldensted L, Ostergaard L (2006) Automatic selection of arterial input function using cluster analysis. Magn Reson Med 55:524–531CrossRefPubMedGoogle Scholar
  25. 25.
    Schmainda KM, Prah M, Connelly J, Rand SD, Hoffman RG, Mueller W, Malkin MG (2014) Dynamic-susceptibility contrast agent MRI measures of relative cerebral blood volume predict response to bevacizumab in recurrent high-grade glioma. Neuro Oncol 16:880–888CrossRefPubMedGoogle Scholar
  26. 26.
    Norris DG (2001) The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment. NMR Biomed 14:77–93CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Robert J. Harris
    • 1
    • 2
  • Timothy F. Cloughesy
    • 3
  • Anthony J. Hardy
    • 1
    • 2
  • Linda M. Liau
    • 4
  • Whitney B. Pope
    • 1
  • Phioanh L. Nghiemphu
    • 3
  • Albert Lai
    • 3
  • Benjamin M. Ellingson
    • 1
    • 2
    • 5
  1. 1.UCLA Brain Tumor Imaging Laboratory (BTIL), Department of Radiological Sciences, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA
  2. 2.Department of Biomedical Physics, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA
  3. 3.Department of Neurology, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA
  4. 4.Department of Neurosurgery, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA
  5. 5.Department of Bioengineering, Henry Samueli School of Engineering and Applied ScienceUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations