Skip to main content
Log in

Colour contrasting between tissues predicts the resection in 5-aminolevulinic acid-guided surgery of malignant gliomas

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Due to the various intensities of 5-aminolevulinic acid (5-ALA) fluorescence, neurosurgeons tend to be uncertain about which tissues to resect. This study aimed to reveal the shortcomings of the human visual perception of fluorescence, particularly the factors guiding the tissue removal and the correlation of fluorescence with contrast enhancement (CE) on magnetic resonance imaging (MRI). Various colour features [CIE L*a*b* colour space, colour difference described by ΔE and contrast ratio (CR)] of total 206 noticed fluorescent areas and their surroundings were measured from the video recordings of 21 primary high grade glioma (HGG) surgeries. The position of a fluorescent region was related to the corecorded navigational image. Following early postoperative MRI, 17 additional regions of corresponding to CE remnants were identified, their colour features were compared to the resected CEs. The targeted video post-processing method was designed, based on the results. There were no complications attributed to 5-ALA use and the median survival was <10 months. 82.5 % of recognised fluorescent areas were removed. Colour spaces of the resected regions and their backgrounds did not overlap. Opposite to the separate colour components (p > 0.05), the distant background colour (p < 0.05) and higher CR and ΔE (p < 0.01) determined the resection of a fluorescent region. Noneloquent location and CR both independently increased the resection rate in logistic regression. However, greater area under the receiver operating characteristic curve (AUC) in case of CR (AUC = 0.78; 95 % CI 0.71–0.83) determined its dominant role in neurosurgeon’s fluorescence perception. CE regions presented with a significantly more saturated shade of violet (consistently higher a* and b*) than other tumour parts (p < 0.05). Regions corresponding to tumour remnants had a significantly lower a* component value (p = 0.02) as well as a lower ΔE than the matched background (AUC = 0.73; 95 % CI 0.65–0.80). In order to increase the resection rate, ΔE > 60 was needed. These results directed essential improvements in the 5-ALA fluorescence visualisation toward enhanced resection rate. The conventional filtering, unadjusted to the 5-ALA colour space converted some background shades to colours resembling relevant fluorescence. This is one of the first studies to demonstrate that perceived colours, their contrasting and CR are of significance in the decision-making during HGG 5-ALA fluorescence-guided surgery. Irrespective of the shortcomings of conventional video filtering, further development of a tailored post-processed contrast stretching will allow to achieve safe and radical tumour resection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbas Q, Garcia IF, Emre Celebi M, Ahmad W, Mushtaq Q (2013) A perceptually oriented method for contrast enhancement and segmentation of dermoscopy images. Skin Res Technol 19:e490–e497. Available: http://www.ncbi.nlm.nih.gov/pubmed/22882675. Accessed 23 August 2014

  2. Acerbi F, Broggi M, Eoli M, Anghileri E, Cuppini L, Pollo B et al (2013) Fluorescein-guided surgery for grade IV gliomas with a dedicated filter on the surgical microscope: preliminary results in 12 cases. Acta Neurochir (Wien) 155:1277–1286. Available: http://www.ncbi.nlm.nih.gov/pubmed/23661063. Accessed 20 August 2014

  3. Bedi S, Khandelwal R (2013) Various image enhancement techniques-a critical review. J Adv Res Comput Commun Eng. Available: http://ijarcce.com/upload/2013/march/55-rati-variousimageenhancement.pdf. Accessed 23 August 2014

  4. Chung IWH, Eljamel S (2013) Risk factors for developing oral 5-aminolevulinic acid-induced side effects in patients undergoing fluorescence guided resection. Photodiagn Photodyn Ther 10:362–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/24284086. Accessed 20 August 2014

  5. Ciburis A, Gadonas D, Gadonas R, Didziapetriene J, Gudinaviciene I, Grazeliene G et al (2003) 5-Aminolevulinic acid induced protoporphyrin IX fluorescence for detection of brain tumor cells in vivo. Exp Oncol 25:51–54. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-0038371186&partnerID=tZOtx3y1

  6. Colditz MJ, Leyen K van, Jeffree RL (2012) Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 2: theoretical, biochemical and practical aspects. J Clin Neurosci 19:1611–1616. Available: http://www.ncbi.nlm.nih.gov/pubmed/23059058. Accessed 20 August 2014

  7. Díez Valle R, Tejada Solis S, Idoate Gastearena MA, García de Eulate R, Domínguez Echávarri P, Aristu Mendiroz J (2011) Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience. J Neurooncol 102:105–113. Available: http://www.ncbi.nlm.nih.gov/pubmed/20607351. Accessed 24 August 2014

  8. Eljamel S, Petersen M, Valentine R, Buist R, Goodman C, Moseley H et al (2013) Comparison of intraoperative fluorescence and MRI image guided neuronavigation in malignant brain tumours, a prospective controlled study. Photodiagn Photodyn Ther 10:356–361. Available: http://www.ncbi.nlm.nih.gov/pubmed/24284085. Accessed 20 August 2014

  9. Gorlia T, van den Bent MJ, Hegi ME, Mirimanoff RO, Weller M, Cairncross JG et al (2008) Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol 9:29–38. Available: http://www.ncbi.nlm.nih.gov/pubmed/18082451. Accessed 7 August 2014

  10. Gurpreet K, Rajdavinder S (2014) Image enhancement and its techniques—a review. Int J Comput Trends Technol 12:148–151. Available: http://www.ijcttjournal.org/archives/ijctt-v12p130. Accessed 23 August 2014

  11. Healey CG, Sawant AP (2012) On the limits of resolution and visual angle in visualization. ACM Trans Appl Percept 9:1–21. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-84878508415&partnerID=tZOtx3y1. Accessed 31 August 2014

  12. Hefti M, von Campe G, Moschopulos M, Siegner A, Looser H, Landolt H (2008) 5-Aminolevulinic acid induced protoporphyrin IX fluorescence in high-grade glioma surgery: a one-year experience at a single institutuion. Swiss Med Wkly 138:180–185. Available: http://www.ncbi.nlm.nih.gov/pubmed/18363116. Accessed 24 August 2014

  13. Hurlbert A, Wolf K (2004) Color contrast: a contributory mechanism to color constancy. Prog Brain Res 144:147–160. Available: http://www.ncbi.nlm.nih.gov/pubmed/14650846. Accessed 31 August 2014

  14. Idoate MA, Díez Valle R, Echeveste J, Tejada S (2011) Pathological characterization of the glioblastoma border as shown during surgery using 5-aminolevulinic acid-induced fluorescence. Neuropathology 31:575–582. Available: http://www.ncbi.nlm.nih.gov/pubmed/21355891. Accessed 20 August 2014

  15. Ikeda D, Chiocca EA (2011) Measuring versus seeing. J Neurosurg 115:9–10; discussion 10. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-79960027638&partnerID=tZOtx3y1. Accessed 20 August 2014

  16. Koc K, Anik I, Cabuk B, Ceylan S (2008) Fluorescein sodium-guided surgery in glioblastoma multiforme: a prospective evaluation. Br J Neurosurg 22:99–103. Available: http://www.ncbi.nlm.nih.gov/pubmed/18224529. Accessed 25 August 2014

  17. Kreth F-W, Thon N, Simon M, Westphal M, Schackert G, Nikkhah G et al (2013) Gross total but not incomplete resection of glioblastoma prolongs survival in the era of radiochemotherapy. Ann Oncol 24:3117–3123. Available: http://www.ncbi.nlm.nih.gov/pubmed/24130262. Accessed 25 August 2014

  18. Kubben PL, ter Meulen KJ, Schijns OEMG, ter Laak-Poort MP, van Overbeeke JJ, van Santbrink H (2011) Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol 12:1062–1070. Available: http://www.ncbi.nlm.nih.gov/pubmed/21868286. Accessed 23 August 2014

  19. Kuhnt D, Becker A, Ganslandt O, Bauer M, Buchfelder M, Nimsky C (2011) Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro Oncol 13:1339–1348. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3223093&tool=pmcentrez&rendertype=abstract. Accessed 25 August 2014

  20. Li Y, Rey-Dios R, Roberts DW, Valdés PA, Cohen-Gadol AA (2013) Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies. World Neurosurg. Available: http://www.ncbi.nlm.nih.gov/pubmed/23851210. Accessed 2 August 2014

  21. Lisani J-L, Petro A-B, Sbert C (2012) Color and contrast enhancement by controlled piecewise affine histogram equalization. Image Process Line 2:243–265. Available: http://www.ipol.im/pub/art/2012/lps-pae/. Accessed 23 August 2014

  22. Liu JTC, Meza D, Sanai N (2014) Trends in fluorescence image-guided surgery for gliomas. Neurosurgery 75:61–71. Available: http://www.ncbi.nlm.nih.gov/pubmed/24618801. Accessed 14 August 2014

  23. Łoza A, Bull DR, Hill PR, Achim AM (2013) Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients. Digit Signal Process 23:1856–1866. Available: http://www.sciencedirect.com/science/article/pii/S1051200413001309. Accessed 23 August 2014

  24. Mateus C, Lemos R, Silva MF, Reis A, Fonseca P, Oliveiros B et al (2013) Aging of low and high level vision: from chromatic and achromatic contrast sensitivity to local and 3D object motion perception. PLoS One 8:e55348. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3561289&tool=pmcentrez&rendertype=abstract. Accessed 20 August 2014

  25. Oppenlander ME, Wolf AB, Snyder LA, Bina R, Wilson JR, Coons SW et al (2014) An extent of resection threshold for recurrent glioblastoma and its risk for neurological morbidity. J Neurosurg 120:846–853. Available: http://www.ncbi.nlm.nih.gov/pubmed/24484232. Accessed 23 August 2014

  26. Panciani PP, Fontanella M, Garbossa D, Agnoletti A, Ducati A, Lanotte M (2012) 5-Aminolevulinic acid and neuronavigation in high-grade glioma surgery: results of a combined approach. Neurocirugia (Astur) 23:23–28. Available: http://www.ncbi.nlm.nih.gov/pubmed/22520100. Accessed 21 August 2014

  27. Ravichandran CG, Magudeeswaran V (2012) An efficient method for contrast enhancement in still images using histogram modification framework. J Comput Sci 8:775–779. Available: http://thescipub.com/abstract/10.3844/jcssp.2012.775.779. Accessed 23 August 2014

  28. Roberts DW, Valdés PA, Harris BT, Fontaine KM, Hartov A, Fan X et al (2011) Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical article. J Neurosurg 114:595–603. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2921008&tool=pmcentrez&rendertype=abstract. Accessed 1 August 2014

  29. Saravanan S (2014) Image contrast enhancement using histogram equalization techniques: review. Int J Adv Comput Sci Technol 3:163–172. Available: www.warse.org/pdfs/2014/ijacst03332014.pdf

  30. Schucht P, Knittel S, Slotboom J, Seidel K, Murek M, Jilch A et al (2014) 5-ALA complete resections go beyond MR contrast enhancement: shift corrected volumetric analysis of the extent of resection in surgery for glioblastoma. Acta Neurochir (Wien) 156:305–312; discussion 312. Available: http://www.ncbi.nlm.nih.gov/pubmed/24449075. Accessed 15 December 2014

  31. Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V (2011) Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12:997–1003. Available: http://www.ncbi.nlm.nih.gov/pubmed/21868284. Accessed 15 July 2014

  32. Shevell SK, Wei J (1998) Chromatic induction: border contrast or adaptation to surrounding light? Vision Res 38:1561–1566. Available: http://www.sciencedirect.com/science/article/pii/S0042698998000066. Accessed 31 August 2014

  33. Slof J, Díez Valle R, Galván J (2014) Cost-effectiveness of 5-aminolevulinic acid-induced fluorescence in malignant glioma surgery. Neurologia. Available: http://www.ncbi.nlm.nih.gov/pubmed/24468659. Accessed 21 August 2014

  34. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen H-J (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401. Available: http://www.ncbi.nlm.nih.gov/pubmed/16648043. Accessed 22 July 2014

  35. Stummer W, Tonn J-C, Goetz C, Ullrich W, Stepp H, Bink A et al (2014) 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 74:310–319; discussion 319–320. Available: http://www.ncbi.nlm.nih.gov/pubmed/24335821. Accessed 29 August 2014

  36. Su X, Huang Q-F, Chen H-L, Chen J (2014) Fluorescence-guided resection of high-grade gliomas: A systematic review and meta-analysis. Photodiagn Photodyn Ther. Available: http://www.ncbi.nlm.nih.gov/pubmed/25131747. Accessed 21 August 2014

  37. Valdés PA, Leblond F, Kim A, Harris BT, Wilson BC, Fan X et al (2011) Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. J Neurosurg 115:11–17. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3129387&tool=pmcentrez&rendertype=abstract. Accessed 21 August 2014

  38. Vogelbaum MA, Jost S, Aghi MK, Heimberger AB, Sampson JH, Wen PY et al (2012) Application of novel response/progression measures for surgically delivered therapies for gliomas: Response Assessment in Neuro-Oncology (RANO) Working Group. Neurosurgery 70:234–243; discussion 243–244. Available: http://www.ncbi.nlm.nih.gov/pubmed/21593697. Accessed 19 August 2014

  39. Widhalm G, Kiesel B, Woehrer A, Traub-Weidinger T, Preusser M, Marosi C et al (2013) 5-Aminolevulinic acid induced fluorescence is a powerful intraoperative marker for precise histopathological grading of gliomas with non-significant contrast-enhancement. PLoS One 8:e76988. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3800004&tool=pmcentrez&rendertype=abstract. Accessed 21 August 2014

  40. Zhao S, Wu J, Wang C, Liu H, Dong X, Shi C et al (2013) Intraoperative fluorescence-guided resection of high-grade malignant gliomas using 5-aminolevulinic acid-induced porphyrins: a systematic review and meta-analysis of prospective studies. PLoS One 8:e63682. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3665818&tool=pmcentrez&rendertype=abstract. Accessed 21 August 2014

Download references

Acknowledgments

This study was supported by the Ministry of Science and Higher Education of the Republic of Poland, a grant for young scientists (no. 01-0056/08). Gliolan® (Medac GmbH, Wedel, Germany), digital camera, data mass storage and software was financed by the grant.

Conflict of interest

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Szmuda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szmuda, T., Słoniewski, P., Olijewski, W. et al. Colour contrasting between tissues predicts the resection in 5-aminolevulinic acid-guided surgery of malignant gliomas. J Neurooncol 122, 575–584 (2015). https://doi.org/10.1007/s11060-015-1750-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1750-0

Keywords

Navigation