Skip to main content
Log in

Feasibility of fluorescence-guided resection of recurrent gliomas using five-aminolevulinic acid: retrospective analysis of surgical and neurological outcome in 58 patients

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Five-aminolevulinic-acid (5-ALA) is known for its benefits in surgery of primary gliomas, but has only been cautiously used in recurrent gliomas dreading over-resection, insufficient or false-positive fluorescence in adjuvantly treated tumors. We evaluated intraoperative fluorescence based on tumor pathology, pretreatment as well as surgical and neurological outcome in patients with recurrent gliomas. Patients who underwent fluorescence-guided surgery for recurrent gliomas between 6/2010 and 2/2014 at our institution were retrospectively selected. Degree of surgical resection, neurological status, pathology results, intraoperative fluorescence and follow up status were analyzed. Patients who underwent repeat surgery without 5-ALA were selected as controls. 58 patients with high grade gliomas (°III and °IV) were included. 10 of 63 tumors (15.9 %) failed to fluoresce intraoperatively of which nine (90 %) had been adjuvantly treated prior to recurrence, as were 46 of the 53 fluorescing tumors (86.8 %). Non-fluorescing tumors were IDH mutated significantly more often (p = 0.005). 30 tumors (47.6 %) were located eloquently. 51 (80.9 %) patients showed no new neurologic deficits postoperatively. 13 patients (20.6 %) showed no signs of recurrence at their latest follow up. Eight patients were lost to follow up. Overall survival was significantly longer in the 5-ALA group (p = 0.025). Fluorescence-guided surgery in recurrent gliomas is safe and allows for a good surgical and neurological outcome in a difficult surgical environment, especially when used in combination with neuronavigation and intraoperative ultrasound to prevent over-resection. Adjuvant therapy did not significantly influence fluorescing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Martinez-Carrillo M, Tovar-Martin I, Zurita-Herrera M, Del Moral-Avila R, Guerrero-Tejada R, Saura-Rojas E, Osorio-Ceballos JL, Arrebola-Moreno JP, Exposito-Hernandez J (2014) Salvage radiosurgery for selected patients with recurrent malignant gliomas. Biomed Res Int 2014:657953. doi:10.1155/2014/657953

    Article  PubMed Central  PubMed  Google Scholar 

  2. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507. doi:10.1056/NEJMra0708126

    Article  CAS  PubMed  Google Scholar 

  3. Hong B, Wiese B, Bremer M, Heissler HE, Heidenreich F, Krauss JK, Nakamura M (2013) Multiple microsurgical resections for repeated recurrence of glioblastoma multiforme. Am J Clin Oncol 36(3):261–268. doi:10.1097/COC.0b013e3182467bb1

    Article  PubMed  Google Scholar 

  4. Park JK, Hodges T, Arko L, Shen M, Dello Iacono D, McNabb A, Olsen Bailey N, Kreisl TN, Iwamoto FM, Sul J, Auh S, Park GE, Fine HA, Black PM (2010) Scale to predict survival after surgery for recurrent glioblastoma multiforme. J Clin Oncol 28(24):3838–3843. doi:10.1200/JCO.2010.30.0582

    Article  PubMed Central  PubMed  Google Scholar 

  5. Barker FG 2nd, Chang SM, Gutin PH, Malec MK, McDermott MW, Prados MD, Wilson CB (1998) Survival and functional status after resection of recurrent glioblastoma multiforme. Neurosurgery 42(4):709–720 discussion 720–703

    Article  PubMed  Google Scholar 

  6. Dirks P, Bernstein M, Muller PJ, Tucker WS (1993) The value of reoperation for recurrent glioblastoma. Can J Surg 36(3):271–275

    CAS  PubMed  Google Scholar 

  7. Harsh GR 4th, Levin VA, Gutin PH, Seager M, Silver P, Wilson CB (1987) Reoperation for recurrent glioblastoma and anaplastic astrocytoma. Neurosurgery 21(5):615–621

    Article  PubMed  Google Scholar 

  8. Hoover JM, Nwojo M, Puffer R, Mandrekar J, Meyer FB, Parney IF (2013) Surgical outcomes in recurrent glioma: clinical article. J Neurosurg 118(6):1224–1231. doi:10.3171/2013.2.JNS121731

    Article  PubMed  Google Scholar 

  9. Osoba D, Brada M, Prados MD, Yung WK (2000) Effect of disease burden on health-related quality of life in patients with malignant gliomas. Neuro-Oncology 2(4):221–228

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198. doi:10.3171/jns.2001.95.2.0190

    Article  CAS  PubMed  Google Scholar 

  11. Gulati S, Jakola AS, Nerland US, Weber C, Solheim O (2011) The risk of getting worse: surgically acquired deficits, perioperative complications, and functional outcomes after primary resection of glioblastoma. World Neurosurg 76(6):572–579. doi:10.1016/j.wneu.2011.06.014

    Article  PubMed  Google Scholar 

  12. Chambless LTC (2013) Innovations in the surgical treatment of gliomas. Innovative Neurosurg 1(3–4):137–143. doi:10.1515/ins-2013-0013

    Google Scholar 

  13. McGirt MJ, Mukherjee D, Chaichana KL, Than KD, Weingart JD, Quinones-Hinojosa A (2009) Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery 65(3):463–469. doi:10.1227/01.NEU.0000349763.42238.E9 discussion 469–470

    Article  PubMed  Google Scholar 

  14. Renovanz M, Hickmann AK, Henkel C, Nadji-Ohl M, Hopf NJ (2014) Navigated versus non-navigated intraoperative ultrasound: is there any impact on the extent of resection of high-grade gliomas? A retrospective clinical analysis. J Neurol Surg A Cent Eur Neurosur 75(3):224–230. doi:10.1055/s-0033-1356486

    Article  Google Scholar 

  15. Ginat DT, Swearingen B, Curry W, Cahill D, Madsen J, Schaefer PW (2014) 3 Tesla intraoperative MRI for brain tumor surgery. J Magn Reson Imaging 39(6):1357–1365

    Article  PubMed  Google Scholar 

  16. Schulz C, Waldeck S, Mauer UM (2012) Intraoperative image guidance in neurosurgery: development, current indications, and future trends. Radiol Res Pract 2012:197364. doi:10.1155/2012/197364

    PubMed Central  PubMed  Google Scholar 

  17. Grunert P, Muller-Forell W, Darabi K, Reisch R, Busert C, Hopf N, Perneczky A (1998) Basic principles and clinical applications of neuronavigation and intraoperative computed tomography. Comput Aided Surg 3(4):166–173. doi:10.1002/(SICI)1097-0150(1998)3:4<166AID-IGS6>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  18. Frey D, Schilt S, Strack V, Zdunczyk A, Rosler J, Niraula B, Vajkoczy P, Picht T (2014) Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neuro-Oncol. doi:10.1093/neuonc/nou110

    PubMed  Google Scholar 

  19. Rosler J, Niraula B, Strack V, Zdunczyk A, Schilt S, Savolainen P, Lioumis P, Makela J, Vajkoczy P, Frey D, Picht T (2014) Language mapping in healthy volunteers and brain tumor patients with a novel navigated TMS system: evidence of tumor-induced plasticity. Clin Neurophysiol 125(3):526–536. doi:10.1016/j.clinph.2013.08.015

    Article  CAS  PubMed  Google Scholar 

  20. Coburger J, Musahl C, Henkes H, Horvath-Rizea D, Bittl M, Weissbach C, Hopf N (2013) Comparison of navigated transcranial magnetic stimulation and functional magnetic resonance imaging for preoperative mapping in rolandic tumor surgery. Neurosurg Rev 36(1):65–75. doi:10.1007/s10143-012-0413-2 discussion 75–66

    Article  PubMed  Google Scholar 

  21. Krieg SM, Sabih J, Bulubasova L, Obermueller T, Negwer C, Janssen I, Shiban E, Meyer B, Ringel F (2014) Preoperative motor mapping by navigated transcranial magnetic brain stimulation improves outcome for motor eloquent lesions. Neuro-Oncol. doi:10.1093/neuonc/nou007

    PubMed  Google Scholar 

  22. De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS (2012) Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 30(20):2559–2565. doi:10.1200/JCO.2011.38.4818

    Article  PubMed  Google Scholar 

  23. Duffau H (2013) Brain mapping in tumors: intraoperative or extraoperative? Epilepsia 54(9):79–83. doi:10.1111/epi.12449

    Article  PubMed  Google Scholar 

  24. Stummer W, Nestler U, Stockhammer F, Krex D, Kern BC, Mehdorn HM, Vince GH, Pichlmeier U (2011) Favorable outcome in the elderly cohort treated by concomitant temozolomide radiochemotherapy in a multicentric phase II safety study of 5-ALA. J Neurooncol 103(2):361–370. doi:10.1007/s11060-010-0400-9

    Article  CAS  PubMed  Google Scholar 

  25. Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93(6):1003–1013. doi:10.3171/jns.2000.93.6.1003

    Article  CAS  PubMed  Google Scholar 

  26. Stummer W, Reulen HJ, Meinel T, Pichlmeier U, Schumacher W, Tonn JC, Rohde V, Oppel F, Turowski B, Woiciechowsky C, Franz K, Pietsch T, Group AL-GS (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62(3):564–576. doi:10.1227/01.neu.0000317304.31579.17 discussion 564–576

    Article  PubMed  Google Scholar 

  27. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, Group AL-GS (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401. doi:10.1016/S1470-2045(06)70665-9

    Article  CAS  PubMed  Google Scholar 

  28. Nabavi A, Thurm H, Zountsas B, Pietsch T, Lanfermann H, Pichlmeier U, Mehdorn M, Group ALARGS (2009) Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase ii study. Neurosurgery 65(6):1070–1076. doi:10.1227/01.NEU.0000360128.03597.C7 discussion 1076-1077

    Article  PubMed  Google Scholar 

  29. Wachter D, Kallenberg K, Wrede A, Schulz-Schaeffer W, Behm T, Rohde V (2012) Fluorescence-guided operation in recurrent glioblastoma multiforme treated with bevacizumab-fluorescence of the noncontrast enhancing tumor tissue? J Neurol Surg A Cent Eur Neurosurg 73(6):401–406. doi:10.1055/s-0032-1304810

    Article  PubMed  Google Scholar 

  30. Tykocki T, Michalik R, Bonicki W, Nauman P (2012) Fluorescence-guided resection of primary and recurrent malignant gliomas with 5-aminolevulinic acid. Preliminary results. Neurol Neurochirur Pol 46(1):47–51

    CAS  Google Scholar 

  31. Vogelbaum MA, Jost S, Aghi MK, Heimberger AB, Sampson JH, Wen PY, Macdonald DR, Van den Bent MJ, Chang SM (2012) Application of novel response/progression measures for surgically delivered therapies for gliomas: Response Assessment in Neuro-Oncology (RANO) Working Group. Neurosurgery 70(1):234–243. doi:10.1227/NEU.0b013e318223f5a7

    Article  PubMed  Google Scholar 

  32. Sanai N (2012) Emerging operative strategies in neurosurgical oncology. Curr Opin Neurol 25(6):756–766. doi:10.1097/WCO.0b013e32835a2574

    Article  PubMed  Google Scholar 

  33. Aldave G, Tejada S, Pay E, Marigil M, Bejarano B, Idoate MA, Diez-Valle R (2013) Prognostic value of residual fluorescent tissue in glioblastoma patients after gross total resection in 5-aminolevulinic acid-guided surgery. Neurosurgery 72(6):915–920. doi:10.1227/NEU.0b013e31828c3974 discussion 920–911

    Article  PubMed  Google Scholar 

  34. Stummer W, Stocker S, Wagner S, Stepp H, Fritsch C, Goetz C, Goetz AE, Kiefmann R, Reulen HJ (1998) Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 42(3):518–525 discussion 525–516

    Article  CAS  PubMed  Google Scholar 

  35. Duffner F, Ritz R, Freudenstein D, Weller M, Dietz K, Wessels J (2005) Specific intensity imaging for glioblastoma and neural cell cultures with 5-aminolevulinic acid-derived protoporphyrin IX. J Neurooncol 71(2):107–111. doi:10.1007/s11060-004-9603-2

    Article  CAS  PubMed  Google Scholar 

  36. Utsuki S, Oka H, Sato S, Shimizu S, Suzuki S, Tanizaki Y, Kondo K, Miyajima Y, Fujii K (2007) Histological examination of false positive tissue resection using 5-aminolevulinic acid-induced fluorescence guidance. Neurol Med Chir 47(5):210–213 discussion 213–214

    Article  Google Scholar 

  37. Panciani PP, Fontanella M, Garbossa D, Agnoletti A, Ducati A, Lanotte M (2012) 5-aminolevulinic acid and neuronavigation in high-grade glioma surgery: results of a combined approach. Neurocirugia 23(1):23–28. doi:10.1016/j.neucir.2012.04.003

    Article  PubMed  Google Scholar 

  38. Health USNIo (2010) APG101 in Glioblastoma. http://clinicaltrials.gov/ct2/show/results/NCT01071837

  39. Wick W, Weller M, Weiler M, Batchelor T, Yung AW, Platten M (2011) Pathway inhibition: emerging molecular targets for treating glioblastoma. Neuro-Oncol 13(6):566–579. doi:10.1093/neuonc/nor039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Tejada-Solis S, Aldave-Orzaiz G, Pay-Valverde E, Marigil-Sanchez M, Idoate-Gastearena MA, Diez-Valle R (2012) Prognostic value of ventricular wall fluorescence during 5-aminolevulinic-guided surgery for glioblastoma. Acta Neurochir 154(11):1997–2002. doi:10.1007/s00701-012-1475-1 discussion 2002

    Article  PubMed  Google Scholar 

  41. Walzlein JH, Synowitz M, Engels B, Markovic DS, Gabrusiewicz K, Nikolaev E, Yoshikawa K, Kaminska B, Kempermann G, Uckert W, Kaczmarek L, Kettenmann H, Glass R (2008) The antitumorigenic response of neural precursors depends on subventricular proliferation and age. Stem Cells 26(11):2945–2954. doi:10.1634/stemcells.2008-0307

    Article  CAS  PubMed  Google Scholar 

  42. Stummer W, Tonn JC, Goetz C, Ullrich W, Stepp H, Bink A, Pietsch T, Pichlmeier U (2014) 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 74(3):310–319. doi:10.1227/NEU.0000000000000267 discussion 319–320

    Article  PubMed Central  PubMed  Google Scholar 

  43. Coburger J, Engelke J, Scheuerle A, Thal DR, Hlavac M, Wirtz CR, Konig R (2014) Tumor detection with 5-aminolevulinic acid fluorescence and Gd-DTPA-enhanced intraoperative MRI at the border of contrast-enhancing lesions: a prospective study based on histopathological assessment. Neurosurg Focus 36(2):E3. doi:10.3171/2013.11.FOCUS13463

    Article  PubMed  Google Scholar 

  44. Stummer W, Stepp H, Moller G, Ehrhardt A, Leonhard M, Reulen HJ (1998) Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue. Acta Neurochir (Wien) 140(10):995–1000

    Article  CAS  Google Scholar 

  45. Tonn JC, Stummer W (2008) Fluorescence-guided resection of malignant gliomas using 5-aminolevulinic acid: practical use, risks, and pitfalls. Clin Neurosurg 55:20–26

    PubMed  Google Scholar 

  46. Stummer W (2013) The Fear of 5-ALA—Is it warranted? World Neurosurg. doi:10.1016/j.wneu.2013.09.048

    PubMed  Google Scholar 

  47. Chang SM, Parney IF, McDermott M, Barker FG 2nd, Schmidt MH, Huang W, Laws ER Jr, Lillehei KO, Bernstein M, Brem H, Sloan AE, Berger M, Glioma Outcomes Investigators (2003) Perioperative complications and neurological outcomes of first and second craniotomies among patients enrolled in the Glioma Outcome Project. J Neurosurg 98(6):1175–1181. doi:10.3171/jns.2003.98.6.1175

    Article  PubMed  Google Scholar 

  48. Feigl GC, Ritz R, Moraes M, Klein J, Ramina K, Gharabaghi A, Krischek B, Danz S, Bornemann A, Liebsch M, Tatagiba MS (2010) Resection of malignant brain tumors in eloquent cortical areas: a new multimodal approach combining 5-aminolevulinic acid and intraoperative monitoring. J Neurosurg 113(2):352–357. doi:10.3171/2009.10.JNS09447

    Article  PubMed  Google Scholar 

  49. Della Puppa A, De Pellegrin S, d’Avella E, Gioffre G, Rossetto M, Gerardi A, Lombardi G, Manara R, Munari M, Saladini M, Scienza R (2013) 5-aminolevulinic acid (5-ALA) fluorescence guided surgery of high-grade gliomas in eloquent areas assisted by functional mapping. Our experience and review of the literature. Acta Neurochirur 155(6):965–972. doi:10.1007/s00701-013-1660-x discussion 972

    Article  Google Scholar 

  50. Giovagnoli AR, Silvani A, Colombo E, Boiardi A (2005) Facets and determinants of quality of life in patients with recurrent high grade glioma. J Neurol Neurosurg Psychiatry 76(4):562–568. doi:10.1136/jnnp.2004.036186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Katrin Hickmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hickmann, AK., Nadji-Ohl, M. & Hopf, N.J. Feasibility of fluorescence-guided resection of recurrent gliomas using five-aminolevulinic acid: retrospective analysis of surgical and neurological outcome in 58 patients. J Neurooncol 122, 151–160 (2015). https://doi.org/10.1007/s11060-014-1694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1694-9

Keywords

Navigation