Skip to main content

Advertisement

Log in

The role of IDO in brain tumor immunotherapy

  • Editors' Invited Manuscript
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Malignant glioma comprises the majority of primary brain tumors. Coincidently, most of those malignancies express an inducible tryptophan catabolic enzyme, indoleamine 2,3 dioxygenase 1 (IDO1). While IDO1 is not normally expressed at appreciable levels in the adult central nervous system, it’s rapidly induced and/or upregulated upon inflammatory stimulus. The primary function of IDO1 is associated with conversion of the essential amino acid, tryptophan, into downstream catabolites known as kynurenines. The depletion of tryptophan and/or accumulation of kynurenine has been shown to induce T cell deactivation, apoptosis and/or the induction of immunosuppressive programming via the expression of FoxP3. This understanding has informed immunotherapeutic design for the strategic development of targeted molecular therapeutics that inhibit IDO1 activity. Here, we review the current knowledge of IDO1 in brain tumors, pre-clinical studies targeting this enzymatic pathway, alternative tryptophan catabolic mediators that compensate for IDO1 loss and/or inhibition, as well as proposed clinical strategies and questions that are critical to address for increasing future immunotherapeutic effectiveness in patients with incurable brain cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  2. Curiel TJ et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949

    Article  CAS  PubMed  Google Scholar 

  3. Mizukami Y et al (2008) CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer 122(10):2286–2293

    Article  CAS  PubMed  Google Scholar 

  4. Fecci PE et al (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13(7):2158–2167

    Article  CAS  PubMed  Google Scholar 

  5. Parsa AT et al (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13(1):84–88

    Article  CAS  PubMed  Google Scholar 

  6. Bloch O et al (2013) Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res 19(12):3165–3175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. (2013) PD-1 inhibitor becomes “breakthrough therapy”. Cancer Discov 3(7): p. OF14

  8. Mitsuka K et al (2013) Expression of indoleamine 2,3-dioxygenase and correlation with pathological malignancy in gliomas. Neurosurgery 72(6):1031–1039. doi:10.1227/NEU.0b013e31828cf945

    Article  PubMed  Google Scholar 

  9. Wainwright DA et al (2012) IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res 18(22):6110–6121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Boyland E (1995) The estimation of tryptophan metabolites in the urine of patients with cancer of the bladder. Biochem J 60:v Annual General Meeting

    Google Scholar 

  11. Wolf H, Madsen PO, Price JM (1968) Studies on the metabolism of tryptophan in patients with benign prostatic hypertrophy or cancer of the prostate. J Urol 100(4):537–543

    CAS  PubMed  Google Scholar 

  12. Rose DP (1967) Tryptophan metabolism in carcinoma of the breast. Lancet 1(7484):239–241

    Article  CAS  PubMed  Google Scholar 

  13. Ivanova VD (1964) Disorders of tryptophan metabolism in leukaemia. Acta Unio Int Contra Cancrum 20:1085–1086

    CAS  PubMed  Google Scholar 

  14. Ambanelli U, Rubino A (1962) Some aspects of tryptophan–nicotinic acid chain in Hodgkin’s disease. Relative roles of tryptophan loading and vitamin supplementation on urinary excretion of metabolites. Haematol Lat 5:49–73

    CAS  PubMed  Google Scholar 

  15. Okamoto A et al (2005) Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin Cancer Res 11(16):6030–6039

    Article  CAS  PubMed  Google Scholar 

  16. Brandacher G et al (2006) Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res 12(4):1144–1151

    Article  CAS  PubMed  Google Scholar 

  17. Munn DH et al (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281(5380):1191–1193

    Article  CAS  PubMed  Google Scholar 

  18. Platten M et al (2005) Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310(5749):850–855

    Article  CAS  PubMed  Google Scholar 

  19. Friberg M et al (2002) Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int J Cancer 101(2):151–155

    Article  CAS  PubMed  Google Scholar 

  20. Uyttenhove C et al (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9(10):1269–1274

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura T et al (2007) Expression of indoleamine 2, 3-dioxygenase and the recruitment of Foxp3-expressing regulatory T cells in the development and progression of uterine cervical cancer. Cancer Sci 98(6):874–881

    Article  CAS  PubMed  Google Scholar 

  22. Chung DJ et al (2009) Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood 114(3):555–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sharma MD et al (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Investig 117(9):2570–2582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wainwright DA et al (2014) Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4 and PD-L1 in mice with brain tumors. Clin Cancer Res 20:5290–5301

    Article  CAS  PubMed  Google Scholar 

  25. Li M et al (2014) The indoleamine 2,3-dioxygenase pathway controls complement-dependent enhancement of chemo-radiation therapy against murine glioblastoma. J Immunother Cancer 2:21

    Article  PubMed Central  PubMed  Google Scholar 

  26. Murray MF (2007) The human indoleamine 2,3-dioxygenase gene and related human genes. Curr Drug Metab 8(3):197–200

    Article  CAS  PubMed  Google Scholar 

  27. Yuasa H et al (2007) Evolution of vertebrate indoleamine 2,3-dioxygenases. J Mol Evol 65(6):705–714

    Article  CAS  PubMed  Google Scholar 

  28. Metz R et al (2007) Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound d-1-methyl-tryptophan. Cancer Res 67(15):7082–7087

    Article  CAS  PubMed  Google Scholar 

  29. Ball HJ et al (2007) Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene 396(1):203–213

    Article  CAS  PubMed  Google Scholar 

  30. Yuasa HJ et al (2009) Characterization and evolution of vertebrate indoleamine 2, 3-dioxygenases IDOs from monotremes and marsupials. Comp Biochem Physiol B 153(2):137–144

    Article  Google Scholar 

  31. Kanai M et al (2009) Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice. Mol Brain 2:8

    Article  PubMed Central  PubMed  Google Scholar 

  32. Pilotte L et al (2012) Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci 109(7):2497–2502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Opitz CA et al (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478(7368):197–203

    Article  CAS  PubMed  Google Scholar 

  34. Munn DH et al (1999) Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med 189(9):1363–1372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Praetorius-Ibba M et al (2000) Ancient adaptation of the active site of tryptophanyl-tRNA synthetase for tryptophan binding. Biochemistry 39(43):13136–13143

    Article  CAS  PubMed  Google Scholar 

  36. Kudo Y, Boyd CA (2001) Characterisation of l-tryptophan transporters in human placenta: a comparison of brush border and basal membrane vesicles. J Physiol 531(Pt 2):405–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kudo Y, Boyd CA (2000) Human placental indoleamine 2,3-dioxygenase: cellular localization and characterization of an enzyme preventing fetal rejection. Biochim Biophys Acta 1500(1):119–124

    Article  CAS  PubMed  Google Scholar 

  38. Alexander AM et al (2002) Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes. Diabetes 51(2):356–365

    Article  CAS  PubMed  Google Scholar 

  39. Munn DH et al (2005) GCN2 kinase in T Cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22(5):633–642

    Article  CAS  PubMed  Google Scholar 

  40. Metz R et al (2012) IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: a novel IDO effector pathway targeted by d-1-methyl-tryptophan. Oncoimmunology 1(9):1460–1468

    Article  PubMed Central  PubMed  Google Scholar 

  41. Terness P et al (2002) Inhibition of allogeneic T Cell proliferation by indoleamine 2,3-dioxygenase–expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196(4):447–457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Fallarino F et al (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9(10):1069–1077

    Article  CAS  PubMed  Google Scholar 

  43. Mezrich JD et al (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185(6):3190–3198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Nguyen NT et al (2010) Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci 107(46):19961–19966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Orabona C et al (2008) SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis. Proc Natl Acad Sci 105(52):20828–20833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Orabona C et al (2004) CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nat Immunol 5(11):1134–1142

    Article  CAS  PubMed  Google Scholar 

  47. Pallotta MT et al (2011) Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol 12(9):870–878

    Article  CAS  PubMed  Google Scholar 

  48. Cady SG, Sono M (1991) 1-Methyl-dl-tryptophan, beta-(3-benzofuranyl)-dl-alanine (the oxygen analog of tryptophan), and beta-[3-benzo(b)thienyl]-dl-alanine (the sulfur analog of tryptophan) are competitive inhibitors for indoleamine 2,3-dioxygenase. Arch Biochem Biophys 291(2):326–333

    Article  CAS  PubMed  Google Scholar 

  49. Peterson ACM, Migawa MT, Martin MJ, Hamaker LK, Czerwinski KM, Zhang W, Arend RA, Fisette PL, Okazi Y, Will JA, Brown RR, Cook JM (1994) Evaluation of functionalized tryptophan derivatives and related compounds as competitive inhibitors of indoleamine 2,3-dioxygenase. Med Chem Res 3:531–544

    CAS  Google Scholar 

  50. Hou DY et al (2007) Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res 67(2):792–801

    Article  CAS  PubMed  Google Scholar 

  51. Austin CJ et al (2010) Biochemical characteristics and inhibitor selectivity of mouse indoleamine 2,3-dioxygenase-2. Amino Acids 39(2):565–578

    Article  CAS  PubMed  Google Scholar 

  52. Qian F et al (2012) Effects of 1-methyltryptophan stereoisomers on IDO2 enzyme activity and IDO2-mediated arrest of human T cell proliferation. Cancer Immunol Immunother 61(11):2013–2020

    Article  CAS  PubMed  Google Scholar 

  53. Yuasa HJ et al (2010) 1-l-methyltryptophan is a more effective inhibitor of vertebrate IDO2 enzymes than 1-d-methyltryptophan. Comp Biochem Physiol B 157(1):10–15

    Article  PubMed  Google Scholar 

  54. Liu X et al (2010) Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 115(17):3520–3530

    Article  CAS  PubMed  Google Scholar 

  55. Meininger D et al (2011) Purification and kinetic characterization of human indoleamine 2,3-dioxygenases 1 and 2 (IDO1 and IDO2) and discovery of selective IDO1 inhibitors. Biochim Biophys Acta 1814(12):1947–1954

    Article  CAS  PubMed  Google Scholar 

  56. Bakmiwewa SM et al (2012) Identification of selective inhibitors of indoleamine 2,3-dioxygenase 2. Bioorg Med Chem Lett 22(24):7641–7646

    Article  CAS  PubMed  Google Scholar 

  57. Holmgaard RB et al (2013) Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med 210(7):1389–1402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Beischlag TV et al (2008) The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr 18(3):207–250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Kerdiles YM et al (2010) Foxo transcription factors control regulatory T cell development and function. Immunity 33(6):890–904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Chow LM et al (2011) Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell 19(3):305–316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an American Brain Tumor Association Discovery Grant (D.A.W.), as well as NIH grants NIH F32 NS073366 (D.A.W.), NIH K99 NS082381 (D.A.W.), NIH R00 NS082381 (D.A.W.) R01 CA138587 (M.S.L.), NIH R01 CA122930 (M.S.L.), NIH U01 NS069997 (M.S.L.).

Conflict of interest

The authors declare that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek A. Wainwright.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, L., Lauing, K.L., Chang, A.L. et al. The role of IDO in brain tumor immunotherapy. J Neurooncol 123, 395–403 (2015). https://doi.org/10.1007/s11060-014-1687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1687-8

Keywords

Navigation