Journal of Neuro-Oncology

, Volume 121, Issue 2, pp 289–296 | Cite as

Differential expression of Toll-like receptor (TLR) and B cell receptor (BCR) signaling molecules in primary diffuse large B-cell lymphoma of the central nervous system

  • Ariz Akhter
  • Noraidah Masir
  • Ghaleb Elyamany
  • Kean-Chang Phang
  • Etienne Mahe
  • Ali Matar Al-Zahrani
  • Meer-Taher Shabani-Rad
  • Douglas Allan Stewart
  • Adnan MansoorEmail author
Laboratory Investigation


Primary diffuse large B-cell lymphoma of the central nervous system (CNS DLBCL) is a distinct and aggressive lymphoma that is confined to CNS. Since, central nervous system is barrier-protected and immunologically silent; role of TLR/BCR signaling in pathogenesis and biology of CNS DLBCL is intriguing. Genomic mutations in key regulators of TLR/BCR signaling pathway (MYD88/CD79B/CARD11) have recently been reported in this disease. These observations raised possible implications in novel targeted therapies; however, expression pattern of molecules related to TLR/BCR pathways in this lymphoma remains unknown. We have analyzed the expression of 19 genes encoding TLR/BCR pathways and targets in CNS DLBCLs (n = 20) by Nanostring nCounter™ analysis and compared it with expression patterns in purified reactive B-lymphocytes and systemic diffuse large B cell lymphoma (DLBCL) (n = 20). Relative expression of TLR4, TLR5, TLR9, CD79B and BLNK was higher in CNS DLBCLs than in control B-lymphocytes; where as TLR7, MALT1, BCL10, CD79A and LYN was lower in CNS DLBCLs (P < 0.0001). When compared with systemic DLBCL samples, higher expression of TLR9, CD79B, CARD11, LYN and BLNK was noted in CNS DLBCL (>1.5 fold change; P < 0.01). The B cell receptor molecules like BLNK and CD79B were also associated with higher expression of MYD88 dependent TLRs (TLR4/5/9). In conclusion, we have shown over expression of TLR/BCR related genes or their targets, where genomic mutations have commonly been identified in CNS DLBCL. We have also demonstrated that TLR over expression closely relate with up regulation of genes associated with BCR pathway like CD79B/BLNK and CARD11, which play an important role in NF-kB pathway activation. Our results provide an important insight into the possibility of TLR and/or B-cell receptor signaling molecules as possible therapeutic targets in CNS DLBCL.


Primary central nervous system lymphoma Toll-like receptor B-cell receptor MYD88 mutations nCounter analysis 



This study was funded through Alberta Cancer Foundation Grant ##25999. Dana Impak Perdana DIP2012-10/3, University Kebangsaan Malaysia, supported N. Masir and K.C. Phang. Authors would like to acknowledge Calgary Laboratory Services (CLS) for technical support and Mr. Thomas Kryton of University of Calgary, for providing assistance with the artwork.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Kluin PDM, Ferry JA (2008) Primary diffuse large B-cell lymphoma of the CNS. In: Swerdlow SH, Campo E, Harris NL et al (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC, Lyon, pp 240–241Google Scholar
  2. 2.
    Villano JL, Koshy M, Shaikh H, Dolecek TA, McCarthy BJ (2011) Age, gender, and racial differences in incidence and survival in primary CNS lymphoma. Br J Cancer 105:1414–1418. doi: 10.1038/bjc.2011.357 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Thiel E, Korfel A, Martus P, Kanz L, Griesinger F, Rauch M, Röth A, Hertenstein B, von Toll T, Hundsberger T, Mergenthaler HG, Leithäuser M, Birnbaum T, Fischer L, Jahnke K, Herrlinger U, Plasswilm L, Nägele T, Pietsch T, Bamberg M, Weller M (2010) High-dose methotrexate with or without whole brain radiotherapy for primary CNS lymphoma (G-PCNSL-SG-1): a phase 3, randomised, non-inferiority trial. Lancet Oncol 11(11):1036–1047PubMedCrossRefGoogle Scholar
  4. 4.
    Norden AD, Drappatz J, Wen PY, Claus EB (2011) Survival among patients with primary central nervous system lymphoma, 1973–2004. J Neurooncol 101:487–493. doi: 10.1007/s11060-010-0269-7 PubMedCrossRefGoogle Scholar
  5. 5.
    Jordanova ES, Riemersma SA, Philippo K, Giphart-Gassler M, Schuuring E, Kluin PM (2002) Hemizygous deletions in the HLA region account for loss of heterozygosity in the majority of diffuse large B-cell lymphomas of the testis and the central nervous system. Genes Chromosom Cancer 35:38–48. doi: 10.1002/gcc.10093 PubMedCrossRefGoogle Scholar
  6. 6.
    Rubenstein JL, Fridlyand J, Shen A, Aldape K, Ginzinger D, Batchelor T, Treseler P, Berger M, McDermott M, Prados M, Karch J, Okada C, Hyun W, Parikh S, Haqq C, Shuman M (2006) Gene expression and angiotropism in primary CNS lymphoma. Blood 107:3716–3723. doi: 10.1182/blood-2005-03-0897 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Tun HW, Personett D, Baskerville KA, Menke DM, Jaeckle KA, Kreinest P, Edenfield B, Zubair AC, O’Neill BP, Lai WR, Park PJ, McKinney M (2008) Pathway analysis of primary central nervous system lymphoma. Blood 111:3200–3210. doi: 10.1182/blood-2007-10-119099 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Booman M, Szuhai K, Rosenwald A, Hartmann E, Kluin-Nelemans H, de Jong D, Schuuring E, Kluin P (2008) Genomic alterations and gene expression in primary diffuse large B-cell lymphomas of immune-privileged sites: the importance of apoptosis and immunomodulatory pathways. J Pathol 216:209–217. doi: 10.1002/path.2399 PubMedCrossRefGoogle Scholar
  9. 9.
    Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES (2011) The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 117:5019–5032. doi: 10.1182/blood-2011-01-293050 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Deckert M, Engert A, Bruck W, Ferreri AJ, Finke J, Illerhaus G, Klapper W, Korfel A, Kuppers R, Maarouf M, Montesinos-Rongen M, Paulus W, Schlegel U, Lassmann H, Wiestler OD, Siebert R, DeAngelis LM (2011) Modern concepts in the biology, diagnosis, differential diagnosis and treatment of primary central nervous system lymphoma. Leukemia 25:1797–1807. doi: 10.1038/leu.2011.169 PubMedCrossRefGoogle Scholar
  11. 11.
    Montesinos-Rongen M, Schafer E, Siebert R, Deckert M (2012) Genes regulating the B cell receptor pathway are recurrently mutated in primary central nervous system lymphoma. Acta Neuropathol 124:905–906. doi: 10.1007/s00401-012-1064-7 PubMedCrossRefGoogle Scholar
  12. 12.
    Montesinos-Rongen M, Godlewska E, Brunn A, Wiestler OD, Siebert R, Deckert M (2011) Activating L265P mutations of the MYD88 gene are common in primary central nervous system lymphoma. Acta Neuropathol 122:791–792PubMedCrossRefGoogle Scholar
  13. 13.
    O’Neill LA (2002) Signal transduction pathways activated by the IL-1 receptor/Toll-like receptor superfamily. Curr Top Microbiol Immunol 270:47–61PubMedGoogle Scholar
  14. 14.
    Li X, Jiang S, Tapping RI (2010) Toll-like receptor signaling in cell proliferation and survival. Cytokine 49:1–9. doi: 10.1016/j.cyto.2009.08.010 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801. doi: 10.1016/j.cell.2006.02.015 PubMedCrossRefGoogle Scholar
  16. 16.
    Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511. doi: 10.1038/nri1391 PubMedCrossRefGoogle Scholar
  17. 17.
    Schmidt C (2006) Immune system’s Toll-like receptors have good opportunity for cancer treatment. J Natl Cancer Inst 98:574–575. doi: 10.1093/jnci/djj198 PubMedCrossRefGoogle Scholar
  18. 18.
    Courts C, Montesinos-Rongen M, Martin-Subero JI, Brunn A, Siemer D, Zuhlke-Jenisch R, Pels H, Jurgens A, Schlegel U, Schmidt-Wolf IG, Schaller C, Reifenberger G, Sabel M, Warnecke-Eberz U, Wiestler OD, Kuppers R, Siebert R, Deckert M (2007) Transcriptional profiling of the nuclear factor-kappaB pathway identifies a subgroup of primary lymphoma of the central nervous system with low BCL10 expression. J Neuropathol Exp Neurol 66:230–237. doi: 10.1097/01.jnen.0000248553.45456.96 PubMedCrossRefGoogle Scholar
  19. 19.
    Wolska A, Lech-Maranda E, Robak T (2009) Toll-like receptors and their role in hematologic malignancies. Curr Mol Med 9:324–335PubMedCrossRefGoogle Scholar
  20. 20.
    Zhao WJ, Xi LY, Ma L (2008) Effect of Penicillium marneffei on TLR-2, TLR-4, and Dectin-1 expression and TNF-alpha production in macrophage. Nan Fang Yi Ke Da Xue Xue Bao 28:37–40PubMedGoogle Scholar
  21. 21.
    Wang L, Zhao Y, Qian J, Sun L, Lu Y, Li H, Li Y, Yang J, Cai Z, Yi Q (2013) Toll-like receptor-4 signaling in mantle cell lymphoma: effects on tumor growth and immune evasion. Cancer 119:782–791. doi: 10.1002/cncr.27792 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Huang WT, Weng SW, Huang CC, Lin HC, Tsai PC, Chuang JH (2012) Expression of Toll-like receptor9 in diffuse large B-cell lymphoma: further exploring CpG oligodeoxynucleotide in NFkappaB pathway. APMIS 120:872–881. doi: 10.1111/j.1600-0463.2012.02915.x PubMedCrossRefGoogle Scholar
  23. 23.
    Chiron D, Bekeredjian-Ding I, Pellat-Deceunynck C, Bataille R, Jego G (2008) Toll-like receptors: lessons to learn from normal and malignant human B cells. Blood 112:2205–2213. doi: 10.1182/blood-2008-02-140673 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Kulkarni MM (2011) Digital multiplexed gene expression analysis using the NanoString nCounter system. Curr Protoc Mol Biol Chapter 25(Unit25B):10. doi: 10.1002/0471142727.mb25b10s94 Google Scholar
  25. 25.
    Wang JQ, Jeelall YS, Ferguson LL, Horikawa K (2014) Toll-like receptors and cancer: MYD88 mutation and inflammation. Front Immunol 5:367. doi: 10.3389/fimmu.2014.00367 PubMedCentralPubMedGoogle Scholar
  26. 26.
    Gonzalez-Aguilar A, Idbaih A, Boisselier B, Habbita N, Rossetto M, Laurenge A, Bruno A, Jouvet A, Polivka M, Adam C, Figarella-Branger D, Miquel C, Vital A, Ghesquieres H, Gressin R, Delwail V, Taillandier L, Chinot O, Soubeyran P, Gyan E, Choquet S, Houillier C, Soussain C, Tanguy ML, Marie Y, Mokhtari K, Hoang-Xuan K (2012) Recurrent mutations of MYD88 and TBL1XR1 in primary central nervous system lymphomas. Clin Cancer Res Off J Am Assoc Cancer Res 18:5203–5211. doi: 10.1158/1078-0432.ccr-12-0845 CrossRefGoogle Scholar
  27. 27.
    Decker T, Schneller F, Kronschnabl M, Dechow T, Lipford GB, Wagner H, Peschel C (2000) Immunostimulatory CpG-oligonucleotides induce functional high affinity IL-2 receptors on B-CLL cells: costimulation with IL-2 results in a highly immunogenic phenotype. Exp Hematol 28:558–568PubMedCrossRefGoogle Scholar
  28. 28.
    Jahrsdorfer B, Muhlenhoff L, Blackwell SE, Wagner M, Poeck H, Hartmann E, Jox R, Giese T, Emmerich B, Endres S, Weiner GJ, Hartmann G (2005) B-cell lymphomas differ in their responsiveness to CpG oligodeoxynucleotides. Clin Cancer Res Off J Am Assoc Cancer Res 11:1490–1499. doi: 10.1158/1078-0432.CCR-04-1890 CrossRefGoogle Scholar
  29. 29.
    Isaza-Correa JM, Liang Z, van den Berg A, Diepstra A, Visser L (2014) Toll-like receptors in the pathogenesis of human B cell malignancies. J Hematol Oncol 7:57. doi: 10.1186/s13045-014-0057-5 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Ben Abdelwahed R, Cosette J, Donnou S, Crozet L, Ouakrim H, Fridman WH, Sautes-Fridman C, Mahjoub A, Fisson S (2013) Lymphoma B-cell responsiveness to CpG-DNA depends on the tumor microenvironment. J Exp Clin Cancer Res CR 32:18. doi: 10.1186/1756-9966-32-18 CrossRefGoogle Scholar
  31. 31.
    Kraan W, van Keimpema M, Horlings HM, Schilder-Tol EJ, Oud ME, Noorduyn LA, Kluin PM, Kersten MJ, Spaargaren M, Pals ST (2014) High prevalence of oncogenic MYD88 and CD79B mutations in primary testicular diffuse large B-cell lymphoma. Leukemia 28:719–720. doi: 10.1038/leu.2013.348 PubMedCrossRefGoogle Scholar
  32. 32.
    Brunn A, Utermohlen O, Sanchez-Ruiz M, Montesinos-Rongen M, Blau T, Schluter D, Deckert M (2010) Dual role of B cells with accelerated onset but reduced disease activity in P0(1)(0)(6)(-)(1)(2)(5)-induced experimental autoimmune neuritis of IgH (0)(/)(0) mice. Acta Neuropathol 120:667–681. doi: 10.1007/s00401-010-0724-8 PubMedCrossRefGoogle Scholar
  33. 33.
    Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB, Kohlhammer H, Lamy L, Zhao H, Yang Y, Xu W, Shaffer AL, Wright G, Xiao W, Powell J, Jiang JK, Thomas CJ, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Connors JM, Johnson NA, Rimsza LM, Campo E, Jaffe ES, Wilson WH, Delabie J, Smeland EB, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Pierce SK, Staudt LM (2010) Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463:88–92. doi: 10.1038/nature08638 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, Kohlhammer H, Xu W, Yang Y, Zhao H, Shaffer AL, Romesser P, Wright G, Powell J, Rosenwald A, Muller-Hermelink HK, Ott G, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Staudt LM (2011) Oncogenically active MYD88 mutations in human lymphoma. Nature 470:115–119. doi: 10.1038/nature09671 PubMedCrossRefGoogle Scholar
  35. 35.
    Deckert M, Montesinos-Rongen M, Brunn A, Siebert R (2014) Systems biology of primary CNS lymphoma: from genetic aberrations to modeling in mice. Acta Neuropathol 127:175–188. doi: 10.1007/s00401-013-1202-x PubMedCrossRefGoogle Scholar
  36. 36.
    Ye H, Gong L, Liu H, Hamoudi RA, Shirali S, Ho L, Chott A, Streubel B, Siebert R, Gesk S, Martin-Subero JI, Radford JA, Banerjee S, Nicholson AG, Ranaldi R, Remstein ED, Gao Z, Zheng J, Isaacson PG, Dogan A, Du MQ (2005) MALT lymphoma with t(14;18)(q32;q21)/IGH-MALT1 is characterized by strong cytoplasmic MALT1 and BCL10 expression. J Pathol 205:293–301. doi: 10.1002/path.1715 PubMedCrossRefGoogle Scholar
  37. 37.
    Schwindt H, Vater I, Kreuz M, Montesinos-Rongen M, Brunn A, Richter J, Gesk S, Ammerpohl O, Wiestler OD, Hasenclever D, Deckert M, Siebert R (2009) Chromosomal imbalances and partial uniparental disomies in primary central nervous system lymphoma. Leukemia 23:1875–1884. doi: 10.1038/leu.2009.120 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ariz Akhter
    • 1
  • Noraidah Masir
    • 2
  • Ghaleb Elyamany
    • 3
  • Kean-Chang Phang
    • 2
  • Etienne Mahe
    • 1
  • Ali Matar Al-Zahrani
    • 3
  • Meer-Taher Shabani-Rad
    • 1
  • Douglas Allan Stewart
    • 4
  • Adnan Mansoor
    • 1
    • 5
    Email author
  1. 1.Division of Hematology and Transfusion Medicine, Department of Pathology and Laboratory MedicineUniversity of Calgary/Calgary Laboratory Services (CLS)CalgaryCanada
  2. 2.Department of Pathology, Faculty of MedicineUniversity Kebangsaan MalaysiaKuala LumpurMalaysia
  3. 3.Department of Pathology and Laboratory Medicine (GE) and Oncology (AZ)Prince Sultan Military Medical CityRiyadhSaudi Arabia
  4. 4.Division of Hematology, Department of MedicineUniversity of Calgary/Tom Baker Cancer CenterCalgaryCanada
  5. 5.Rm C614, Foothills Medical CentreCalgaryCanada

Personalised recommendations