Skip to main content

Advertisement

Log in

Therapeutic implications of CD1d expression and tumor-infiltrating macrophages in pediatric medulloblastomas

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

ABSTRACT

Immunobiology of medulloblastoma (MB), the most common malignant brain tumor in children, is poorly understood. Although tumor cells in some MBs were recently shown to express CD1d and be susceptible to Vα24-invariant natural killer T (NKT)-cell cytotoxicity, the clinical relevance of CD1d expression in MB patients remains unknown. We investigated the expression of CD1d in pediatric MBs and correlated with molecular and clinical characteristics. Specifically, we explored if NKT cell therapy can be targeted at a subset of pediatric MBs with poorer prognosis. Particularly, infantile MBs have a worse outcome because radiotherapy is delayed to avoid neurocognitive sequelae. Immunohistochemistry for CD1d was performed on a screening set of 38 primary pediatric MBs. Gene expression of the membrane form of M2 macrophage marker, CD163, was studied in an expanded cohort of 60 tumors. Outcome data was collected prospectively. Thirteen of 38 MBs (34.2 %) expressed CD1d on immunohistochemistry. CD1d was expressed mainly on MB tumor cells, and on some tumor-associated macrophages. Majority (18/22, 82 %) of non sonic-hedgehog/Wingless-activated MBs (group 3 and 4) were CD1d-negative (p = 0.05). A subset of infantile MBs (4/9, 44.4 %) expressed CD1d. Macrophages infiltrating MB expressed CD163 apart from CD1d. Molecular subtypes demonstrated statistical differences in CD163 expression, SHH-tumors were the most enriched (p = 0.006). Molecular and clinical subtypes of pediatric MB exhibit distinct differences in CD1d expression, which have important therapeutic implications. High CD1d expression in infantile MBs offers potential new immunotherapeutic treatment with NKT cell therapy in infants, where treatment is suboptimal due delayed radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Stastny MJ, Brown CE, Ruel C et al (2007) Medulloblastomas expressing IL13Ralpha2 are targets for IL13-zetakine+ cytolytic T cells. J Pediatr Hematol Oncol 29(10):669–677

    Article  PubMed  CAS  Google Scholar 

  2. Ahmed N, Ratnayake M, Savoldo B et al (2007) Regression of experimental medulloblastoma following transfer of HER2-specific T cells. Cancer Res 67(12):5957–5964

    Article  PubMed  CAS  Google Scholar 

  3. Liu D, Song L, Brawley VS et al (2013) Medulloblastoma expresses CD1d and can be targeted for immunotherapy with NKT cells. Clin Immunol 149(1):55–64

    Article  PubMed  CAS  Google Scholar 

  4. Kronenberg M, Gapin L (2002) The unconventional lifestyle of NKT cells. Nat Rev Immunol 2(8):557–568

    PubMed  CAS  Google Scholar 

  5. Song L, Asgharzadeh S, Salo J et al (2009) Valpha24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J Clin Invest 119(6):1524–1536

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Tachibana T, Onodera H, Tsuruyama T et al (2005) Increased intratumor Valpha24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas. Clin Cancer Res 11(20):7322–7327

    Article  PubMed  CAS  Google Scholar 

  7. Godfrey DI, Berzins SP (2007) Control points in NKT-cell development. Nat Rev Immunol 7:505–518

    Article  PubMed  CAS  Google Scholar 

  8. Taniguchi M, Seino K, Nakayama T (2003) The NKT cell system: bridging innate and acquired immunity. Nat Immunol 4(12):1164–1165

    Article  PubMed  CAS  Google Scholar 

  9. Burrows PD, Kroenberg M, Taniguchi M (2009) NKT cells turn ten. Nat Immunol 10(7):669–671

    Article  PubMed  CAS  Google Scholar 

  10. Gapin L (2008) The making of NKT cells. Nat Immunol 9(9):1009–1011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Terabe M, Berzofsky JA (2007) NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends Immunol 28(11):491–496

    Article  PubMed  CAS  Google Scholar 

  12. Ambrosino E, Terabe M, Halder RC et al (2007) Cross-regulation between Type I and Type II NKT cells in regulating tumor immunity: a new immunoregulatory axis. J Immunol 179:5126–5136

    Article  PubMed  CAS  Google Scholar 

  13. Loza MJ, Metelitsa LS, Perussia B (2002) NKT and T cells: coordinate regulation of NK-like phenotype and cytokine production. Eur J Immunol 32:3453–3462

    Article  PubMed  CAS  Google Scholar 

  14. Baev DV, Peng X, Song L et al (2004) Distinct homeostatic requirements of CD4+ and CD4 subsets of Vα24-invariant natural killer T cells in humans. Blood 104(13):4150–4158

    Article  PubMed  CAS  Google Scholar 

  15. Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336

    Article  PubMed  CAS  Google Scholar 

  16. Li X, Shiratsuchi T, Chen G (2009) Invariant TCR rather than CD1d shapes the preferential activities of c-glycoside analogues against human versus murine invariant NKT cells. J Immunol 183:4415–4421

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Metelitsa LS, Weinberg KI, Emanuel PD et al (2003) Expression of CD1d by myelomonocytic leukemias provides a target for cytotoxic NKT cells. Leukemia 17:1068–1077

    Article  PubMed  CAS  Google Scholar 

  18. Metelitsa LS, Naidenko OV, Kant A et al (2001) Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 167:3114–3122

    Article  PubMed  CAS  Google Scholar 

  19. Godfrey DI, McCluskey J, Rossjohn J (2005) CD1d antigen presentation: treats for NKT cells. Nat Immunol 6(8):754–756

    Article  PubMed  CAS  Google Scholar 

  20. Natalie AB, Kwok SW, Lars KN et al (2007) CD1d–lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448(5):44–49

    Google Scholar 

  21. Mulhern RK, Horowitz ME, Kovnar EH et al (1989) Neurodevelopmental status of infants and young children treated for brain tumors with preirradiation chemotherapy. J Clin Oncol 7:1660–1666

    PubMed  CAS  Google Scholar 

  22. Jenkin D, Danjoux C, Greenberg M (1998) Subsequent quality of life for children irradiated for a brain tumor before age four years. Med Pediatr Oncol 31:506–511

    Article  PubMed  CAS  Google Scholar 

  23. Kiltie AE, Lashford LS, Gattamaneni HR (1997) Survival and late effects in medulloblastoma patients treated with craniospinal irradiation under three years old. Med Pediatr Oncol 28:348–354

    Article  PubMed  CAS  Google Scholar 

  24. Hoppe-Hirsch E, Brunet L, Laroussinie F et al (1995) Intellectual outcome in children with malignant tumors of the posterior fossa: influence of the field of irradiation and quality of surgery. Childs Nerv Syst 11:340–346

    Article  PubMed  CAS  Google Scholar 

  25. Palmer SL, Goloubeva O, Reddick WE et al (2001) Patterns of intellectual development among survivors of pediatric medulloblastoma: a longitudinal analysis. J Clin Oncol 19:2302–2308

    PubMed  CAS  Google Scholar 

  26. Teo WY, Shen J, Su JM et al (2013) Implications of tumor location on subtypes of medulloblastoma. Pediatr Blood Cancer 60(9):1408–1410

    Article  PubMed  Google Scholar 

  27. Clarkson DB, Fan YA, Joe H (1993) A remark on algorithm 643: FEXACT: an algorithm for performing Fisher’s Exact Test in r x c contingency tables. ACM Trans on Math Softw 19:484–488

    Article  Google Scholar 

  28. Kaplan EL, Meier P (1958) Nonparametric evaluation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  Google Scholar 

  29. Taylor MD, Northcott PA, Korshunov A et al (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123:465–472

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Van GH, Delputte P, Nauwynck H (2010) Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy. Mol Immunol 47:1650–1660

    Article  Google Scholar 

  31. Mantovani A, Allavena P, Sica A et al (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  32. Sica A, Larghi P, Mancino A et al (2008) Macrophage polarization in tumour progression. Semin Cancer Bio 18:349–355

    Article  CAS  Google Scholar 

  33. Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest 117:1155–1166

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Shu Q, Wong KK, Su JM et al (2008) Direct orthotopic transplantation of fresh surgical specimen preserves CD133+ tumor cells in clinically relevant mouse models of medulloblastoma and glioma. Stem Cells 26:1414–1424

    Article  PubMed  Google Scholar 

  35. Kaatsch P, Rickert CH, Kuehl J et al (2001) Population-based epidemiologic data on brain tumors in German children. Cancer 92:3155–3164

    Article  PubMed  CAS  Google Scholar 

  36. MacDonald TJ (2008) Aggressive infantile embryonal tumors. Child Neurol 23:1195–1203

    Article  Google Scholar 

  37. Johnston DL, Keene D, Bartels U et al (2009) Medulloblastoma in children under the age of three years: a retrospective Canadian review. J Neurooncol 94:51–56

    Article  PubMed  Google Scholar 

  38. Bouffet E (2010) Medulloblastoma in infants the critical issues of the dilemma. Curr Oncol 17(3):2–3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Rutkowski S, Cohen B, Finlay J et al (2010) Medulloblastoma in young children. Pediatr Blood Cancer 54:635–637

    Article  PubMed  Google Scholar 

  40. White L, Kellie S, Gray E et al (1998) Postoperative chemotherapy in children less than 4 years of age with malignant brain tumors: promising initial response to a VETOPEC-based regimen. J Pediatr Hematol Oncol 20:125–130

    Article  PubMed  CAS  Google Scholar 

  41. Ater JL, van Eys J, Woo SY et al (1997) MOPP chemotherapy without irradiation as primary postsurgical therapy for brain tumors in infants and young children. J Neurooncol 32:243–252

    Article  PubMed  CAS  Google Scholar 

  42. Baram TZ, van Eys J, Dowell RE et al (1987) Survival and neurologic outcome of infants with medulloblastoma treated with surgery and MOPP chemotherapy: a preliminary report. Cancer 60:173–177

    Article  PubMed  CAS  Google Scholar 

  43. Lafay-Cousin L, Bouffet E, Hawkins C et al (2009) Impact of radiation avoidance on survival and neurocognitive outcome in infant medulloblastoma. Curr Oncol 16(6):21–28

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Grundy RG, Wilne SH, Robinson KJ et al (2010) Primary postoperative chemotherapy without radiotherapy for treatment of brain tumours other than ependymoma in children under 3 years: results of the first UKCCSG/SIOP CNS 9204 trial. Eur J of Cancer 46:120–133

    Article  CAS  Google Scholar 

  45. Rutkowski S, Bode U, Deinlein F et al (2005) Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med 352:978–986

    Article  PubMed  CAS  Google Scholar 

  46. Dhodapkar KM, Cirignano B, Chamian F et al (2004) Invariant natural killer T cells are preserved in patients with glioma and exhibit antitumor activity following dendritic cell-mediated expansion. Int J Cancer 109:893–899

    Article  PubMed  CAS  Google Scholar 

  47. Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 23:877–900

    Article  PubMed  CAS  Google Scholar 

  48. Swann J, Crowe NY, Hayakawa Y et al (2004) Regulation of antitumour immunity by CD1d-restricted NKT cells. Immunol Cell Biol 82:323–331

    Article  PubMed  CAS  Google Scholar 

  49. Molling JW, Langius JA, Langendijk JA et al (2007) Low levels of circulating invariant natural killer T cells predict poor clinical outcome in patients with head and neck squamous cell carcinoma. J Clin Oncol 25:862–868

    Article  PubMed  Google Scholar 

  50. Asgharzadeh S, Salo JA, Ji L et al (2012) Clinical significance of tumor-associated inflammatory cells in metastatic neuroblastoma. J Clin Oncol 30(28):3525–3532

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported by NIH Grant CA109467 and Grants from the Gillson Longenbaugh Foundation, John S. Dunn Research Foundation, the Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation and National Medical Research Council Research Fellowship (Singapore).

Conflict of interests

All the authors declared no competing or conflict of interests, or financial disclosures that are relevant to the subject matter under consideration in this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan-Yee Teo or Ching C. Lau.

Additional information

Wan-Yee Teo and Ching C. Lau are Co-Corresponding authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teo, WY., Elghetany, M.T., Shen, J. et al. Therapeutic implications of CD1d expression and tumor-infiltrating macrophages in pediatric medulloblastomas. J Neurooncol 120, 293–301 (2014). https://doi.org/10.1007/s11060-014-1572-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1572-5

Keywords

Navigation