Journal of Neuro-Oncology

, Volume 116, Issue 1, pp 89–97 | Cite as

PTEN status mediates 2ME2 anti-tumor efficacy in preclinical glioblastoma models: role of HIF1α suppression

  • Carrie R. Muh
  • Shweta Joshi
  • Alok R. Singh
  • Santosh Kesari
  • Donald L. DurdenEmail author
  • Milan T. Makale
Laboratory Investigation


Glioblastoma (GBM) is the most common brain cancer and is highly lethal in both adults and children. 2-methoxyestradiol (2ME2) is a microtubule inhibitor that potently inhibits HIF1α, GBM angiogenesis and tumor growth in preclinical models. In patients, 2ME2 exhibits low toxicity and promising but inconsistent efficacy. Given its preclinical potency and its tolerability in patients, we sought to determine whether 2ME2 therapy could be enhanced by addressing resistance via combination therapy, and with biomarkers to identify responsive glioma subgroups. We demonstrate that the PTEN–PI3K axis regulates HIF1α in glioma models. We utilized isogenic-pairs of glioma cell lines, deficient in PTEN or stably reconstituted with PTEN, to determine the role of PTEN in 2ME2 sensitivity in vitro and in vivo. Chou–Talalay synergy studies reveal significant synergy when a pan-PI3K inhibitor is combined with 2ME2. This synergistic activity was correlated with a synergistic suppression of HIF1α accumulation under hypoxic conditions in glioma models. In vivo, 2ME2 markedly inhibited tumor-induced angiogenesis and significantly reduced tumor growth only in a PTEN reconstituted GBM models in both subcutaneous and orthotopic intracranial mouse models. Collectively, these results: (1) suggest that PTEN status predicts sensitivity to 2ME2 and (2) justify exploration of 2ME2 combined with pan-PI3K inhibitors for the treatment of this intractable brain cancer.


2ME2 Glioblastoma multiforme PTEN PI3K Angiogenesis HIF1α 



We thank Dr. H.K Shu for providing the EGFRvIII transduced LN229 cell line. This work was supported in part by a grant from EntreMed, Inc. 9640 Medical Center Drive, Rockville, MD 20850 and NIH grants CA94233 and HL091365 to Dr. Donald L. Durden, and a grant from the Musella Foundation and Heroes of Hope Coalition to Dr. Carrie Muh.

Conflict of interest

D. Durden discloses financial conflict of interest related to the development of SF1126. This aspect has been reviewed by the UCSD committee on conflict of interest.

Supplementary material

11060_2013_1283_MOESM1_ESM.tif (360 kb)
Supplementary material 1 (TIFF 359 kb)
11060_2013_1283_MOESM2_ESM.tif (342 kb)
Supplementary material 2 (TIFF 341 kb)
11060_2013_1283_MOESM3_ESM.doc (40 kb)
Supplementary material 3 (DOC 39 kb)


  1. 1.
    Buckner JC (2003) Factors influencing survival in high-grade gliomas. Semin Oncol 30(6 Suppl 19):10–14PubMedCrossRefGoogle Scholar
  2. 2.
    DeAngelis LM (2001) Brain tumors. N Engl J Med 344(2):114–123PubMedCrossRefGoogle Scholar
  3. 3.
    Srividya MR et al (2011) Homozygous 10q23/PTEN deletion and its impact on outcome in glioblastoma: a prospective translational study on a uniformly treated cohort of adult patients. Neuropathology 31(4):376–383PubMedCrossRefGoogle Scholar
  4. 4.
    Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996PubMedCrossRefGoogle Scholar
  5. 5.
    Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068CrossRefGoogle Scholar
  6. 6.
    Gallia GL et al (2006) PIK3CA gene mutations in pediatric and adult glioblastoma multiforme. Mol Cancer Res 4(10):709–714PubMedCrossRefGoogle Scholar
  7. 7.
    Scheid MP, Woodgett JR (2003) Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett 546(1):108–112PubMedCrossRefGoogle Scholar
  8. 8.
    Castellino RC, Muh CR, Durden DL (2009) PI-3 kinase-PTEN signaling node: an intercept point for the control of angiogenesis. Curr Pharm Des 15(4):380–388PubMedCrossRefGoogle Scholar
  9. 9.
    Sun H et al (1999) PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA 96(11):6199–6204PubMedCrossRefGoogle Scholar
  10. 10.
    Wen S et al (2001) PTEN controls tumor-induced angiogenesis. PNAS 98(8):4622–4627PubMedCrossRefGoogle Scholar
  11. 11.
    Forsythe JA et al (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16(9):4604–4613PubMedCentralPubMedGoogle Scholar
  12. 12.
    Ivan M et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468PubMedCrossRefGoogle Scholar
  13. 13.
    Jaakkola P et al (2001) Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472PubMedCrossRefGoogle Scholar
  14. 14.
    Semenza G (2002) Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 64(5–6):993–998PubMedCrossRefGoogle Scholar
  15. 15.
    Jiang BH et al (2001) Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 12(7):363–369PubMedGoogle Scholar
  16. 16.
    Zhong H et al (2000) Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60(6):1541–1545PubMedGoogle Scholar
  17. 17.
    Zundel W et al (2000) Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14(4):391–396PubMedGoogle Scholar
  18. 18.
    Alvarez-Tejado M et al (2002) Lack of evidence for the involvement of the phosphoinositide 3-kinase/Akt pathway in the activation of hypoxia-inducible factors by low oxygen tension. J Biol Chem 277(16):13508–13517PubMedCrossRefGoogle Scholar
  19. 19.
    Arsham AM et al (2002) Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1 alpha nor sufficient for HIF-1-dependent target gene transcription. J Biol Chem 277(17):15162–15170PubMedCrossRefGoogle Scholar
  20. 20.
    Mabjeesh NJ et al (2003) 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 3(4):363–375PubMedCrossRefGoogle Scholar
  21. 21.
    Kirches E, Warich-Kirches M (2009) 2-methoxyestradiol as a potential cytostatic drug in gliomas? Anticancer Agents Med Chem 9(1):55–65PubMedCrossRefGoogle Scholar
  22. 22.
    Kang SH et al (2006) Antitumor effect of 2-methoxyestradiol in a rat orthotopic brain tumor model. Cancer Res 66(24):11991–11997PubMedCrossRefGoogle Scholar
  23. 23.
    Lis A et al (2004) 2-Methoxyestradiol inhibits proliferation of normal and neoplastic glial cells, and induces cell death, in vitro. Cancer Lett 213:57–65PubMedCrossRefGoogle Scholar
  24. 24.
    James J et al (2007) Phase I safety, pharmacokinetic and pharmacodynamic studies of 2-methoxyestradiol alone or in combination with docetaxel in patients with locally recurrent or metastatic breast cancer. Invest New Drugs 25(1):41–48PubMedCrossRefGoogle Scholar
  25. 25.
    Bruce JY et al (2012) A phase II study of 2-methoxyestradiol nanocrystal colloidal dispersion alone and in combination with sunitinib malate in patients with metastatic renal cell carcinoma progressing on sunitinib malate. Invest New Drugs 30(2):794–802PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Sweeney C et al (2005) A phase II multicenter, randomized, double-blind, safety trial assessing the pharmacokinetics, pharmacodynamics, and efficacy of oral 2-methoxyestradiol capsules in hormone-refractory prostate cancer. Clin Cancer Res 11(18):6625–6633PubMedCrossRefGoogle Scholar
  27. 27. Phase 2 study of panzem nanocrystal colloidal dispersion (NCD) in combination with fixed-dose temozolomide to patients with recurrent glioblastoma multiforme (GBM).
  28. 28. A phase 2 study with panzem in patients with relapsed or plateau phase multiple myeloma.
  29. 29. A combination study to determine the safety and efficacy of panzem NCD with avastin in metastatic carcinoid tumors.
  30. 30.
    Dahut WL et al (2006) Phase I clinical trial of oral 2-methoxyestradiol, an antiangiogenic and apoptotic agent, in patients with solid tumors. Cancer Biol Ther 5(1):22–27PubMedCrossRefGoogle Scholar
  31. 31.
    Mooberry SL (2003) New insights into 2-methoxyestradiol, a promising antiangiogenic and antitumor agent. Curr Opin Oncol 15(6):425–430PubMedCrossRefGoogle Scholar
  32. 32.
    Duman BB et al (2013) PTEN, Akt, MAPK, p53 and p95 expression to predict trastuzumab resistance in HER2 positive breast cancer. J BUON 18(1):44–50PubMedGoogle Scholar
  33. 33.
    Sami A, Karsy M (2013) Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: novel therapeutic agents and advances in understanding. Tumour Biol 34(4):1991–2002PubMedCrossRefGoogle Scholar
  34. 34.
    Wischhusen J et al (2003) CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death. Oncogene 22(51):8233–8245PubMedCrossRefGoogle Scholar
  35. 35.
    Garlich JR et al (2008) A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res 68(1):206–215PubMedCrossRefGoogle Scholar
  36. 36.
    Rong Y et al (2005) PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Cancer Res 65(4):1406–1413PubMedCrossRefGoogle Scholar
  37. 37.
    Andrews NC, Faller DV (1991) A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19(9):2499PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Peirce SK et al (2011) The PI-3 kinase-Akt-MDM2-survivin signaling axis in high-risk neuroblastoma: a target for PI-3 kinase inhibitor intervention. Cancer Chemother Pharmacol 68(2):325–335PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Mabjeesh NJ et al (2003) 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 3:363–375PubMedCrossRefGoogle Scholar
  40. 40.
    Ricker JL et al (2004) 2-Methoxyestradiol inhibits hypoxia-inducible factor 1α, tumor growth, and angiogenesis and augments paclitaxel efficacy in head and neck squamous cell carcinoma. Clin Cancer Res 10:8665–8673PubMedCrossRefGoogle Scholar
  41. 41.
    Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55PubMedCrossRefGoogle Scholar
  42. 42.
    Su JD et al (2003) PTEN and phosphatidylinositol 3′-kinase inhibitors up-regulate p53 and block tumor-induced angiogenesis: evidence for an effect on the tumor and endothelial compartment. Cancer Res 63(13):3585–3592PubMedGoogle Scholar
  43. 43.
    Said R et al (2013) P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy. Oncotarget 4(5):705–714PubMedGoogle Scholar
  44. 44.
    Sermeus A, Michiels C (2011) Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis 2:e164PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Chen D et al (2003) Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function. J Biol Chem 278(16):13595–13598PubMedCrossRefGoogle Scholar
  46. 46.
    Stambolic V et al (2001) Regulation of PTEN transcription by p53. Mol Cell 8(2):317–325PubMedCrossRefGoogle Scholar
  47. 47.
    Mellinghoff IK et al (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353(19):2012–2024PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Carrie R. Muh
    • 1
  • Shweta Joshi
    • 2
  • Alok R. Singh
    • 2
  • Santosh Kesari
    • 3
  • Donald L. Durden
    • 2
    • 4
    Email author
  • Milan T. Makale
    • 3
  1. 1.Department of Neurosurgery and PediatricsDuke University Medical CenterDurhamUSA
  2. 2.Department of Pediatrics, Moores Cancer CenterUniversity of California, San DiegoLa JollaUSA
  3. 3.Translational Neuro-Oncology Laboratories, Moores Cancer CenterUniversity of California, San DiegoLa JollaUSA
  4. 4.Department of Pediatrics, Rady Children’s HospitalUniversity of California, San DiegoSan DiegoUSA

Personalised recommendations