Advertisement

Journal of Neuro-Oncology

, Volume 116, Issue 1, pp 31–39 | Cite as

Cytotoxic human peripheral blood-derived γδT cells kill glioblastoma cell lines: implications for cell-based immunotherapy for patients with glioblastoma

  • Tsutomu NakazawaEmail author
  • Mitsutoshi Nakamura
  • Young Soo Park
  • Yasushi Motoyama
  • Yasuo Hironaka
  • Fumihiko Nishimura
  • Ichiro Nakagawa
  • Shuichi Yamada
  • Ryosuke Matsuda
  • Kentaro Tamura
  • Tadashi Sugimoto
  • Yasuhiro Takeshima
  • Akiko Marutani
  • Takahiro Tsujimura
  • Noriko Ouji
  • Yukiteru Ouji
  • Masahide Yoshikawa
  • Hiroyuki Nakase
Laboratory Investigation

Abstract

Glioblastoma (GBM) is a highly aggressive brain tumor for which novel therapeutic approaches, such as immunotherapy, are urgently needed. Zoledronate (ZOL), an inhibitor of osteoclastic activity, is known to stimulate peripheral blood-derived γδT cells and sensitize tumors to γδT cell-mediated killing. To investigate the feasibility of γδT cell-based immunotherapy for patients with GBM, we focused on the killing of GBM cell lines by γδT cells and the molecular mechanisms involved in these cell–cell interactions. Peripheral blood mononuclear cells were expanded in ZOL and interleukin (IL)-2 for 14 days, and γδT cells were enriched in the expanded cells by the immunomagnetic depletion of αβT cells. Gliomas are resistant to NK cells but susceptible to lymphokine-activated killer cells and some cytotoxic T lymphocytes. When the γδT cell-mediated killing of three GBM cell lines (U87MG, U138MG and A172 cells) and an NK-sensitive leukemia cell line (K562 cells) were tested, 32 % U87MG, 15 % U138MG, 1 % A172, and 50 % K562 cells were killed at an effector:target ratio of 5:1. The γδT cell-mediated killing of all three GBM cell lines was significantly enhanced by ZOL and this ZOL-enhanced killing was blocked by an anti-T cell receptor (TcR) antibody. These results indicated that TcR γδ is crucial for the recognition of ZOL-treated GBM cells by γδT cells. Since the low level killing of GBM cells by the γδT cells was enhanced by ZOL, γδT cell-targeting therapy in combination with ZOL treatment could be effective for patients with GBM.

Keywords

γδT cell Zoledronate Glioblastoma Cytotoxicity Immunotherapy T-cell receptor 

Notes

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (No. 22791352).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The study design was approved by the ethics committee at Clinic Grandsoul Nara, Uda, Japan, and conformed to the Declaration of Helsinki.

Supplementary material

11060_2013_1258_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)

References

  1. 1.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  2. 2.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466PubMedCrossRefGoogle Scholar
  3. 3.
    Yamanaka R (2006) Novel immunotherapeutic approaches to glioma. Curr Opin Mol Ther 8:46–51PubMedGoogle Scholar
  4. 4.
    Vauleon E, Avril T, Collet B, Mosser J, Quillien V (2010) Overview of cellular immunotherapy for patients with glioblastoma. Clin Dev Immunol. doi: 10.1155/2010/689171 PubMedCentralPubMedGoogle Scholar
  5. 5.
    Ogbomo H, Cinatl J Jr, Mody CH, Forsyth PA (2011) Immunotherapy in gliomas: limitations and potential of natural killer (NK) cell therapy. Trends Mol Med 17:433–441PubMedCrossRefGoogle Scholar
  6. 6.
    Hayday AC (2000) γδ cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026PubMedCrossRefGoogle Scholar
  7. 7.
    Bonneville M, O’Brien RL, Born WK (2010) γδT cell effector functions a blend of innate programming and acquired plasticity. Nat Rev Immunol 10:467–478PubMedCrossRefGoogle Scholar
  8. 8.
    Haas W, Pereira P, Tonegawa S (1993) Gamma/delta cells. Annu Rev Immunol 11:637–685PubMedCrossRefGoogle Scholar
  9. 9.
    Kabelitz D, Wesch D, He W (2007) Perspectives of γδT cells in tumor immunology. Cancer Res 67:5–8PubMedCrossRefGoogle Scholar
  10. 10.
    Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G (2003) Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 197:163–168PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Hintz M, Reichenberg A, Altincicek B, Bahr U, Gschwind RM, Kollas AK, Beck E, Wiesner J, Eberl M, Jomaa H (2001) Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human γδT cells in Escherichia coli. FEBS Lett 509:317–322PubMedCrossRefGoogle Scholar
  12. 12.
    Vantourout P, Mookerjee-Basu J, Rolland C, Pont F, Martin H, Davrinche C, Martinez LO, Perret B, Collet X, Perigaud C, Peyrottes S, Champagne E (2009) Specific requirements for Vγ9 Vδ2 T cell stimulation by a natural adenylated phosphoantigen. J Immunol 183:3848–3857PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Harly C, Guillaume Y, Nedellec S, Peigne CM, Monkkonen H, Monkkonen J, Li J, Kuball J, Adams EJ, Netzer S, Dechanet-Merville J, Leger A, Herrmann T, Breathnach R, Olive D, Bonneville M, Scotet E (2012) Key implication of CD277/Butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδT cell subset. Blood 120:2269–2279PubMedCrossRefGoogle Scholar
  14. 14.
    Toutirais O, Cabillic F, Le Friec G, Salot S, Loyer P, Le Gallo M, Desille M, de La Pintiere CT, Daniel P, Bouet F, Catros V (2009) DNAX accessory molecule-1 (CD226) promotes human hepatocellular carcinoma cell lysis by Vγ9 Vδ2 T cells. Eur J Immunol 39:1361–1368PubMedCrossRefGoogle Scholar
  15. 15.
    Dieli F, Vermijlen D, Fulfaro F, Caccamo N, Meraviglia S, Cicero G, Roberts A, Buccheri S, D’Asaro M, Gebbia N, Salerno A, Eberl M, Hayday AC (2007) Targeting human γδT cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 67:7450–7457PubMedCrossRefGoogle Scholar
  16. 16.
    Corvaisier M, Moreau-Aubry A, Diez E, Bennouna J, Mosnier JF, Scotet E, Bonneville M, Jotereau F (2005) Vγ9 Vδ2 T cell response to colon carcinoma cells. J Immunol 175:5481–5488PubMedGoogle Scholar
  17. 17.
    Meraviglia S, Eberl M, Vermijlen D, Todaro M, Buccheri S, Cicero G, La Mendola C, Guggino G, D’Asaro M, Orlando V, Scarpa F, Roberts A, Caccamo N, Stassi G, Dieli F, Hayday AC (2010) In vivo manipulation of Vγ9 Vδ2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin Exp Immunol 161:290–297PubMedCentralPubMedGoogle Scholar
  18. 18.
    Gomes AQ, Martins DS, Silva-Santos B (2010) Targeting γδT lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application. Cancer Res 70:10024–10027PubMedCrossRefGoogle Scholar
  19. 19.
    Todaro M, D’Asaro M, Caccamo N, Iovino F, Francipane MG, Meraviglia S, Orlando V, La Mendola C, Gulotta G, Salerno A, Dieli F, Stassi G (2009) Efficient killing of human colon cancer stem cells by γδT lymphocytes. J Immunol 182:7287–7296PubMedCrossRefGoogle Scholar
  20. 20.
    Fujimiya Y, Suzuki Y, Katakura R, Miyagi T, Yamaguchi T, Yoshimoto T, Ebina T (1997) In vitro interleukin 12 activation of peripheral blood CD3(+)CD56(+) and CD3(+)CD56(-) gammadelta T cells from glioblastoma patients. Clin Cancer Res 3:633–643PubMedGoogle Scholar
  21. 21.
    Bryant NL, Suarez-Cuervo C, Gillespie GY, Markert JM, Nabors LB, Meleth S, Lopez RD, Lamb LS Jr (2009) Characterization and immunotherapeutic potential of γδT-cells in patients with glioblastoma. Neuro Oncol 11:357–367PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Bryant NL, Gillespie GY, Lopez RD, Markert JM, Cloud GA, Langford CP, Arnouk H, Su Y, Haines HL, Suarez-Cuervo C, Lamb LS Jr (2011) Preclinical evaluation of ex vivo expanded/activated γδT cells for immunotherapy of glioblastoma multiforme. J Neurooncol 101:179–188PubMedCrossRefGoogle Scholar
  23. 23.
    Sato K, Kimura S, Segawa H, Yokota A, Matsumoto S, Kuroda J, Nogawa M, Yuasa T, Kiyono Y, Wada H, Maekawa T (2005) Cytotoxic effects of γδT cells expanded ex vivo by a third generation bisphosphonate for cancer immunotherapy. Int J Cancer 116:94–99PubMedCrossRefGoogle Scholar
  24. 24.
    Kobayashi H, Tanaka Y, Yagi J, Minato N, Tanabe K (2011) Phase I/II study of adoptive transfer of γδT cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma. Cancer Immunol Immunother 60:1075–1084PubMedCrossRefGoogle Scholar
  25. 25.
    Abe Y, Muto M, Nieda M, Nakagawa Y, Nicol A, Kaneko T, Goto S, Yokokawa K, Suzuki K (2009) Clinical and immunological evaluation of zoledronate-activated Vγ9γδT-cell-based immunotherapy for patients with multiple myeloma. Exp Hematol 37:956–968PubMedCrossRefGoogle Scholar
  26. 26.
    Nakajima J, Murakawa T, Fukami T, Goto S, Kaneko T, Yoshida Y, Takamoto S, Kakimi K (2010) A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous γδT cells. Eur J Cardiothorac Surg 37:1191–1197PubMedCrossRefGoogle Scholar
  27. 27.
    Lichtenfels R, Biddison WE, Schulz H, Vogt AB, Martin R (1994) CARE-LASS (calcein-release-assay), an improved fluorescence-based test system to measure cytotoxic T lymphocyte activity. J Immunol Meth 172:227–239CrossRefGoogle Scholar
  28. 28.
    Cimini E, Piacentini P, Sacchi A, Gioia C, Leone S, Lauro GM, Martini F, Agrati C (2011) Zoledronic acid enhances Vδ2 T-lymphocyte antitumor response to human glioma cell lines. Int J Immunopathol Pharmacol 24:139–148PubMedGoogle Scholar
  29. 29.
    Kuroda J, Kimura S, Segawa H, Kobayashi Y, Yoshikawa T, Urasaki Y, Ueda T, Enjo F, Tokuda H, Ottmann OG, Maekawa T (2003) The third-generation bisphosphonate zoledronate synergistically augments the anti-Ph + leukemia activity of imatinib mesylate. Blood 102:2229PubMedCrossRefGoogle Scholar
  30. 30.
    Battistini L, Salvetti M, Ristori G, Falcone M, Raine CS, Brosnan CF (1995) γδT cell receptor analysis supports a role for HSP 70 selection of lymphocytes in multiple sclerosis lesions. Mol Med 1:554–562PubMedCentralPubMedGoogle Scholar
  31. 31.
    Nathanson D, Mischel PS (2011) Charting the course across the blood–brain barrier. J Clin Invest 121:31–33PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Coomber BL, Stewart PA, Hayakawa K, Farrell CL, Del Maestro RF (1987) Quantitative morphology of human glioblastoma multiforme microvessels: structural basis of blood–brain barrier defect. J Neurooncol 5:299–307PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tsutomu Nakazawa
    • 1
    • 5
    Email author
  • Mitsutoshi Nakamura
    • 1
  • Young Soo Park
    • 1
  • Yasushi Motoyama
    • 1
  • Yasuo Hironaka
    • 1
  • Fumihiko Nishimura
    • 1
  • Ichiro Nakagawa
    • 1
  • Shuichi Yamada
    • 1
  • Ryosuke Matsuda
    • 1
  • Kentaro Tamura
    • 1
  • Tadashi Sugimoto
    • 1
  • Yasuhiro Takeshima
    • 1
  • Akiko Marutani
    • 1
  • Takahiro Tsujimura
    • 4
  • Noriko Ouji
    • 3
  • Yukiteru Ouji
    • 2
  • Masahide Yoshikawa
    • 2
  • Hiroyuki Nakase
    • 1
  1. 1.Department of NeurosurgeryNara Medical University School of MedicineKashiharaJapan
  2. 2.Department of Pathogen, Infection and ImmunityNara Medical University School of MedicineKashiharaJapan
  3. 3.Department of MicrobiologyNara Medical University School of MedicineKashiharaJapan
  4. 4.Clinic Grandsoul NaraUdaJapan
  5. 5.Grandsoul Research Institute for Immunology, Inc.UdaJapan

Personalised recommendations