Skip to main content
Log in

miR-335 promotes cell proliferation by directly targeting Rb1 in meningiomas

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript


Meningiomas, one of the most common benign brain tumors in humans, arise from arachnoid cells in the brain meninges. Our investigations have revealed that miR-335 is a typical microRNA overexpressed in meningiomas in humans. Characterization of the effects of miR-335 overexpression in meningiomas demonstrated that elevated levels of miR-335 increased cell growth and inhibited cell cycle arrest in the G0/G1 phase in vitro; in addition, reduction of the miR-335 levels had the opposite effect on tumor growth and progression. Further, previous studies have shown that the mechanism of effect of miR-335 on the proliferation of meningioma cells is associated with alterations in the expression of human retinoblastoma 1 (Rb1). Our results indicate that miR-335 plays an essential role in the proliferation of meningioma cells by directly targeting the Rb1 signaling pathway. Thus, our results highlight a novel molecular interaction between miR-335 and Rb1, and miR-335 may represent a potential novel therapeutic agent to target the proliferation of meningioma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) World Health Organization classification of tumours of the central nervous system. IARC Press, Lyon

    Google Scholar 

  2. Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, Cheunsuchon P, Louis DN, Klibanski A (2010) Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 70:2350–2358

    Article  PubMed  CAS  Google Scholar 

  3. Wen PY, Yung WKA, Lamborn KR, Norden AD, Cloughesy TF, Abrey LE, Fine HA, Chang SM, Robins HI, Fink K, DeAngelis LM, Mehta M, Tomaso ED, Drappatz J, Kesari S, Ligon KL, Aldape K, Jain RK, Stiles CD, Egorin MJ, Prados MD (2009) Phase II study of imatinib mesylate for recurrent meningiomas (North American brain tumor consortium study 01–08). Neuro Oncology 11:853–860

    Article  PubMed  CAS  Google Scholar 

  4. Chen CZ (2005) MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 353:1768–1771

    Article  PubMed  CAS  Google Scholar 

  5. Saydam O, Shen Y, Würdinger T, Senol O, Boke E, James MF, Tannous BA, Stemmer-Rachamimov AO, Yi M, Stephens RM, Fraefel C, Gusella JF, Krichevsky AM, Breakefield XO (2009) Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing e-cadherin and activating the Wnt/β-catenin signaling pathway. Mol Cell Biol 29:5923–5940

    Article  PubMed  CAS  Google Scholar 

  6. Scarola M, Schoeftner S, Schneider C, Benetti R (2010) miR-335 directly targets Rb1 (pRb/p105) in a proximal connection to p53-dependent stress response. Cancer Res 70:6925–6933

    Article  PubMed  CAS  Google Scholar 

  7. Shu M, Zheng X, Wu S, Lu H, Leng T, Zhu W, Zhou Y, Ou Y, Lin X, Lin Y, Xu D, Zhou Y, Yan G (2011) Targeting oncogenic miR-335 inhibits growth and invasion of malignant astrocytoma cells. Mol Cancer 10:59

    Article  PubMed  CAS  Google Scholar 

  8. Chen C, Wu CQ, Zhang ZQ, Yao DK, Zhu L (2011) Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation. Exp Cell Res 317(12):1714–1725

    Article  PubMed  CAS  Google Scholar 

  9. Tome M, Lopez-Romero P, Albo C, Sepulveda JC, Fernandez-Gutierrez B, Dopazo A, Bernad A, Gonzalez MA (2011) miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ 18(6):985–995

    Article  PubMed  CAS  Google Scholar 

  10. Darling JL (1990) The in vitro biology of human brain tumors. In: Thomas DGT (ed) Neuro-oncology: primary malignant brain tumors. Johns Hopkins University Press, Baltimore Md, pp 1–25

    Google Scholar 

  11. Chang SF, Chang TK, Peng HH, Yeh YT, Lee DY, Yeh CR, Zhou J, Cheng CK, Chang CA, Chiu JJ (2009) BMP-4 induction of arrest and differentiation of osteoblast-like cells via p21CIP1 and p27KIP1 regulation. Mol Endocrinol 23:1827–1838

    Article  PubMed  CAS  Google Scholar 

  12. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  PubMed  CAS  Google Scholar 

  13. Mack PC, Chi SG, Meyers FJ, Stewart SL, deVere White RW, Gumerlock PH (1998) Increased RB1 abnormalities in human primary prostate cancer following combined androgen blockade. Prostate 34:145–151

    Article  PubMed  CAS  Google Scholar 

  14. Ronchetti D, Lionetti M, Mosca L, Agnelli L, Andronache A, Fabris S, Deliliers GL, Neri A (2008) An integrative genomic approach reveals coordinated expression of intronic miR-335, miR-342, and miR-561 with deregulated host genes in multiple myeloma. BMC Med Genomics 1:37

    Article  PubMed  Google Scholar 

  15. Wang YX, Zhang XY, Zhang BF, Yang CQ, Chen XM, Gao HJ (2010) Initial study of microRNA expression profiles of colonic cancer without lymph node metastasis. J Dig Dis 11:50–54

    Article  PubMed  Google Scholar 

  16. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massague J (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152

    Article  PubMed  CAS  Google Scholar 

  17. Classon M, Harlow E (2002) The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2:910–917

    Article  PubMed  CAS  Google Scholar 

  18. Marsh EE, Lin Z, Yin P, Milad M, Chakravarti D, Bulun SE (2008) Differential expression of microRNA species in human uterine leiomyoma versus normal myometrium. Fertil Steril 89:1771–1776

    Article  PubMed  CAS  Google Scholar 

  19. Swiss VA, Casaccia P (2010) Cell-context specific role of the E2F/Rb pathway in development and disease. Glia 58:377–390

    PubMed  Google Scholar 

  20. Du W, Searle JS (2009) The rb pathway and cancer therapeutics. Curr Drug Targets 10:581–589

    PubMed  CAS  Google Scholar 

  21. Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    Article  PubMed  CAS  Google Scholar 

  22. Knudsen ES, Wang JY (2010) Targeting the RB-pathway in cancer therapy. Clin Cancer Res 16:1094–1099

    Article  PubMed  CAS  Google Scholar 

Download references


This work was supported by the China Natural Science Foundation (81072078, 81000963, 30200335 and 30872657), Jiangsu Province’s 333 Talent Project Foundation (BRA2011046), the Kunshan Social Development Foundation (Grant Number: KS1006, KS1009), and the Suzhou Social Development Foundation (SYS201063).

Conflict of interest

All authors have declared the sources of research funding for this manuscript and have no financial or other contractual agreements that might cause (or be perceived as causes of) conflicts of interest.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Yanjun Zeng, Tianhong Pan or Zhimin Wang.

Additional information

Lei Shi, Dongyi Jiang, Guan Sun and Yi Wan have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, L., Jiang, D., Sun, G. et al. miR-335 promotes cell proliferation by directly targeting Rb1 in meningiomas. J Neurooncol 110, 155–162 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: