Advertisement

Journal of Neuro-Oncology

, Volume 110, Issue 1, pp 21–25 | Cite as

Absence of KIAA1549-BRAF fusion in rosette-forming glioneuronal tumors of the fourth ventricle (RGNT)

  • Marco GessiEmail author
  • Sally R. Lambert
  • Libero Lauriola
  • Andreas Waha
  • V. Peter Collins
  • Torsten Pietsch
Laboratory Investigation

Abstract

Rosette-forming glioneuronal tumors (RGNT) of the fourth ventricle are rare mixed glioneuronal tumors included in the revised WHO classification of central nervous system tumors, showing partial histological similarities to pilocytic astrocytomas. To evaluate potential similarities at the molecular level between these tumors, we analysed a series of 10 RGNT for the presence of KIAA1549-BRAF fusions using interphase fluorescence in situ hybridisation. However, we found no cases showing KIAA1549-BRAF gene fusion or BRAF V600E mutation. Our data support the hypothesis that RGNT may represent a distinct entity among the glioneuronal tumors of the central nervous system, with molecular features different from pilocytic astrocytomas.

Keywords

Pilocytic astrocytomas Rosette-forming glioneuronal tumors BRAF KIAA1549 Cerebellum FISH 

Notes

Acknowledgments

S. R. Lambert is supported by The Samantha Dickson Brain Tumour Trust. Special thanks to Dr. H. Urbach (Neuroradiology, University of Bonn, Germany) for the MRI image.

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Hainfellner JA, Scheithauer BW, Giangaspero F, Rosenblum MK (2007) Rosette-forming glioneuronal tumour of the fourth ventricle. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO Classification of tumours of the central nervous system, 4th edn. IARC Press, Lyon, pp 115–116Google Scholar
  2. 2.
    Rosenblum MK (2007) The 2007 WHO classification of nervous system tumors: newly recognized members of the mixed glioneuronal group. Brain Pathol 17:308–313PubMedCrossRefGoogle Scholar
  3. 3.
    Ellezam B, Theeler BJ, Luthra R, Adesina AM, Aldape KD, Gilbert MR (2012) Recurrent PIK3CA mutations in rosette-forming glioneuronal tumor. Acta Neuropathol 123:285–287PubMedCrossRefGoogle Scholar
  4. 4.
    Gessi M, Waha A, Setty P, Waha A, Pietsch T (2011) Analysis of KIAA1549–BRAF fusion status in a case of rosette-forming glioneuronal tumor of the fourth ventricle (RGNT). Neuropathology 31:654–657PubMedCrossRefGoogle Scholar
  5. 5.
    Karafin M, Jallo GI, Ayars M, Eberhart CG, Rodriguez FJ (2011) Rosette forming glioneuronal tumor in association with Noonan syndrome: pathobiological implications. Clin Neuropathol 30:297–300PubMedGoogle Scholar
  6. 6.
    Albanese A, Mangiola A, Pompucci A, Sabatino G, Gessi M, Lauriola L, Anile C (2005) Rosette-forming glioneuronal tumour of the fourth ventricle: report of a case with clinical and surgical implications. J Neurooncol 7:195–197CrossRefGoogle Scholar
  7. 7.
    Packham D, Ward RL, Ap Lin V, Hawkins NJ, Hitchins MP (2009) Implementation of novel pyrosequencing assays to screen for common mutations of BRAF and KRAS in a cohort of sporadic colorectal cancers. Diagn Mol Pathol 18:62–71PubMedCrossRefGoogle Scholar
  8. 8.
    Shah MN, Leonard JR, Perry A (2010) Rosette-forming glioneuronal tumors of the posterior fossa. J Neurosurg Pediatr 5:98–103PubMedCrossRefGoogle Scholar
  9. 9.
    Komori T, Scheithauer BW, Hirose T (2002) A rosette-forming glioneuronal tumor of the fourth ventricle: infratentorial form of dysembryoplastic neuroepithelial tumor? Am J Surg Pathol 26:582–591PubMedCrossRefGoogle Scholar
  10. 10.
    Kuchelmeister K, Demirel T, Schlörer E, Bergmann M, Gullotta F (1995) Dysembryoplastic neuroepithelial tumour of the cerebellum. Acta Neuropathol 89:385–390PubMedCrossRefGoogle Scholar
  11. 11.
    Scheithauer BW, Hawkins C, Tihan T, Vandenberg SR, Burger PC. Pilocytic astrocytoma. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO Classification of tumours of the central nervous system, 4th edn. IARC Press, Lyon, pp 14–21Google Scholar
  12. 12.
    Jones DT, Kocialkowski S, Liu L, Pearson DM, Bäcklund LM, Ichimura K, Collins VP (2008) Duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68:8673–8677PubMedCrossRefGoogle Scholar
  13. 13.
    Cin H, Meyer C, Herr R, Janzarik WG, Lambert S, Jones DT, Jacob K, Benner A, Witt H, Remke M, Bender S, Falkenstein F, Van Anh TN, Olbrich H, von Deimling A, Pekrun A, Kulozik AE, Gnekow A, Scheurlen W, Witt O, Omran H, Jabado N, Collins VP, Brummer T, Marschalek R, Lichter P, Korshunov A, Pfister SM (2011) Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol 121:763–774PubMedCrossRefGoogle Scholar
  14. 14.
    Jones DT, Kocialkowski S, Liu L, Pearson DM, Ichimura K, Collins VP (2009) Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549-BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 20:2119–2123CrossRefGoogle Scholar
  15. 15.
    Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C, Schmieder K, Wesseling P, Mawrin C, Hasselblatt M, Louis DN, Korshunov A, Pfister S, Hartmann C, Paulus W, Reifenberger G, von Deimling A (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405PubMedCrossRefGoogle Scholar
  16. 16.
    Sharma MK, Zehnbauer BA, Watson MA, Gutmann DH (2005) RAS pathway activation and an oncogenic RAS mutation in sporadic pilocytic astrocytoma. Neurology 65:1335–1336PubMedCrossRefGoogle Scholar
  17. 17.
    Gallia GL, Rand V, Siu IM, Eberhart CG, James CD, Marie SK, Oba-Shinjo SM, Carlotti CG, Caballero OL, Simpson AJ, Brock MV, Massion PP, Carson BS Sr, Riggins GJ (2006) PIK3CA gene mutations in pediatric and adult glioblastoma multiforme. Mol Cancer Res 4:709–714PubMedCrossRefGoogle Scholar
  18. 18.
    Rodriguez EF, Scheithauer BW, Giannini C, Rynearson A, Cen L, Hoesley B, Gilmer-Flynn H, Sarkaria JN, Jenkins S, Long J, Rodriguez FJ (2011) PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathol 121:407–420PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Marco Gessi
    • 1
    Email author
  • Sally R. Lambert
    • 2
  • Libero Lauriola
    • 3
  • Andreas Waha
    • 1
  • V. Peter Collins
    • 2
  • Torsten Pietsch
    • 1
  1. 1.Institute of NeuropathologyUniversity of Bonn Medical CenterBonnGermany
  2. 2.Department of PathologyUniversity of CambridgeCambridgeUK
  3. 3.Department of PathologyCatholic UniversityRomeItaly

Personalised recommendations