Skip to main content

Advertisement

Log in

Spatial brain distribution of intra-axial metastatic lesions in breast and lung cancer patients

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The frequency of the diagnosis of brain metastases has increased in recent years, probably due to an increased diagnostic sensitivity. Site predilection of brain lesions in oncological patients at the time of onset, may suggest mechanisms of brain-specific vulnerability to metastasis. The aim of the study is to determine the spatial distribution of intra-axial brain metastases by using voxel-wise statistics in breast and lung cancer patients. For this retrospective cross-sectional study, clinical data and MR imaging of 864 metastases at first diagnosis in 114 consecutive advanced cancer patients from 2006 to 2011 were included. Axial post-gadolinium T1 weighted images were registered to a standard template. Binary lesion masks were created after segmentation of volumes of interest. The voxel-based lesion-symptom mapping approach was used to calculate a t statistic describing the differences between groups. It was found that the lesions were more likely to be located in the parieto-occipital lobes and cerebellum for the total cohort and for the non small cell lung cancer group, and in the cerebellum for the breast cancer group. The voxel-wise inter-group comparisons showed the largest significant clusters in the cerebellum for the breast cancer group (p < 0.0008) and in the occipital lobe (p = 0.02) and cerebellum (p = 0.02) for the non small cell lung cancer group. We conclude a non-uniform distribution of metastatic brain lesions in breast and lung cancer patients that suggest differential vulnerability to metastasis in the different regions of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peretti-Viton P, Margain D, Murayama N et al (1991) Brain metastases. J Neuroradiol 18:161–172

    PubMed  CAS  Google Scholar 

  2. Suh JH (2010) Stereotactic radiosurgery for the management of brain metastases. N Engl J Med 362(12):1119–1127

    Article  PubMed  CAS  Google Scholar 

  3. Jernal A, Murray T, Samuels A et al (2003) Cancer statistics. CA Cancer J Clin 53:5–26

    Article  Google Scholar 

  4. Nagao E, Yoshiura T, Hiwatashi A et al (2011) 3D turbo spin-echo sequence with motion-sensitized driven-equilibrium preparation for detection of brain metastases on 3T MR imaging. AJNR Am J Neuroradiol 32:664–670

    Article  PubMed  CAS  Google Scholar 

  5. Qian Y-F, Yu C-L, Zhang C et al (2008) MR T1-weighted inversion recovery imaging in detecting brain metastases: Could it replace T1-weighted spin-echo imaging? AJNR Am J Neuroradiol 29:701–704

    Article  PubMed  Google Scholar 

  6. Schellinger PD, Meinck HM, Thron A (1999) Diagnostic accuracy of MRI compared to CCT in patients with brain metastases. J Neurooncol 44(3):275–281

    Article  PubMed  CAS  Google Scholar 

  7. Fidler IJ, Yano S, Zhang RD et al (2002) The seed and soil hypothesis: vascularization and brain metastases. Lancet Oncol 3(1):53–57

    Article  PubMed  CAS  Google Scholar 

  8. Hwang TL, Close TP, Grego JM et al (1996) Predilection of brain metastases in grey and white matter junction and vascular border zones. Cancer 77:1551–1555

    Article  PubMed  CAS  Google Scholar 

  9. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8:98–101

    PubMed  CAS  Google Scholar 

  10. Delattre JY, Krol G, Thaler HT et al (1988) Distribution of brain metastases. Arch Neurol 45:741–744

    Article  PubMed  CAS  Google Scholar 

  11. Graf AH, Buchberger W, Langmayr H et al (1988) Site preference of metastatic tumors of the brain. Virchows Arch A Pathol Anat Histopathol 412(5):493–498

    Article  PubMed  CAS  Google Scholar 

  12. Bender ET, Tomé WA (2011) Distribution of brain metastases: implications for non-uniform dose prescriptions. Br J Radiol 84(1003):649–658

    Article  PubMed  CAS  Google Scholar 

  13. Hengel K, Sidhu G, Choi J et al (2012) Attributes of brain metastases from breast and lung cancer. Int J Clin Oncol (Epub ahead of print)

  14. Mazziotta JC, Toga AW, Evans A et al (1995) A probabilistic atlas of the human brain: theory and rationale for its development. The international consortium for brain mapping (ICBM). NeuroImage 2(2):89–101

    Article  PubMed  CAS  Google Scholar 

  15. Charil A, Zijdenbos AP, Taylor J et al (2003) Statistical mapping analysis of lesion location and neurological disability in multiple sclerosis: application to 452 patient data sets. NeuroImage 19(3):532–544

    Article  PubMed  Google Scholar 

  16. Wen W, Sachdev PS (2004) Extent and distribution of white matter hyperintensities in stroke patients: the Sydney Stroke Study. Stroke 35(12):2813–2819

    Article  PubMed  Google Scholar 

  17. Smith SM (2004) Overview of fMRI analysis. Br J Radiol 77(2):S167–75

    Google Scholar 

  18. Bates E, Wilson SM, Saygin AP et al (2003) Voxel-based lesion-symptom mapping. Nat Neurosci 6(5):448–450

    PubMed  CAS  Google Scholar 

  19. Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1):273–289

    Article  PubMed  CAS  Google Scholar 

  20. Tsukada Y, Fouad A, Pickren JW et al (1983) Central nervous system metastasis from breast carcinoma. Autopsy study. Cancer 52:2349–2354

    Article  PubMed  CAS  Google Scholar 

  21. Ghia A, Tomé WA, Thomas S et al (2007) Distribution of brain metastases in relation to the hippocampus: implications for neurocognitive functional preservation. Int J Radiat Oncol Biol Phys 68(4):971–977

    Article  PubMed  Google Scholar 

  22. van der Sande JJ, van Tinteren H, Brandsma D et al (2009) Brain metastases in patients with pelvic or abdominal malignancy do not prevail in the posterior fossa: a retrospective study. J Neurol 256(9):1485–1487

    Article  PubMed  Google Scholar 

  23. Hendrikse J, Petersen ET, van Laar PJ et al (2008) Cerebral border zones between distal end branches of intracranial arteries: MR imaging. Radiology 246:572–580

    Article  PubMed  Google Scholar 

  24. Armulik A, Genové G, Mäe M et al (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561

    Article  PubMed  CAS  Google Scholar 

  25. Carbonell WS, Ansorge O, Sibson N et al (2009) The vascular basement membrane as “soil” in brain metastasis. PLoS One 4(6):e5857

    Article  PubMed  Google Scholar 

  26. Lorger M, Felding-Habermann B (2010) Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol 176(6):2958–2971

    Article  PubMed  Google Scholar 

  27. Lorger M, Krueger JS, O’Neal M, Staflin K et al (2009) Activation of tumor cell integrin alpha v beta 3 controls angiogenesis and metastatic growth in the brain. Proc Natl Acad Sci USA 106(26):10666–10671

    Article  PubMed  CAS  Google Scholar 

  28. Bos PD, Zhang XH, Nadal C et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009

    Article  PubMed  CAS  Google Scholar 

  29. Hendrikse J, Van der Grond J, Lu H et al (2004) Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 35:882–887

    Article  PubMed  Google Scholar 

  30. Van Laar PJ, Hendrikse J, Golay X et al (2006) In vivo flow territory mapping of major brain feeding arteries. NeuroImage 29:136–144

    Article  PubMed  Google Scholar 

  31. Kajita Y, Takayasu M, Suzuki Y et al (1995) Regional differences in cerebral vasomotor control by nitric oxide. Brain Res Bull 38:365–369

    Article  PubMed  CAS  Google Scholar 

  32. Iadecola C (1993) Regulation of the cerebral microcirculation during neural activity: Is nitric oxide the missing link? Trends Neurosci 16:206–15

    Google Scholar 

  33. Nozaki K, Moskowitz MA, Maynard KI et al (1993) Possible origins and distribution of immunoreactive nitric oxide synthetase-containing nerve fibers in cerebral arteries. J Cereb Blood Flow Metab 13:70–79

    Article  PubMed  CAS  Google Scholar 

  34. Cavaglia M, Dombrowski SM, Drazba J et al (2001) Regional variation in brain capillary density and vascular response to ischemia. Brain Res 910:81–93

    Article  PubMed  CAS  Google Scholar 

  35. Edvinsson L (1982) Vascular autonomic nerves and corresponding receptors in brain vessels. Pathol Biol (Paris) 30(5):261–268

    CAS  Google Scholar 

  36. Edvinsson L, Nielsen KC, Owman C et al (1972) Sympathetic neural influence on norepinephrine vasoconstriction in brain vessels. Arch Neurol 27:492–495

    Article  PubMed  CAS  Google Scholar 

  37. Ito H, Yokoyama I, Iida H et al (2000) Regional differences in cerebral vascular response to PaCo2 changes in humans measured by positron emission tomography. J Cereb Blood Flow Metab 20:1264–1279

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Cosimo Quattrocchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quattrocchi, C.C., Errante, Y., Gaudino, C. et al. Spatial brain distribution of intra-axial metastatic lesions in breast and lung cancer patients. J Neurooncol 110, 79–87 (2012). https://doi.org/10.1007/s11060-012-0937-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-0937-x

Keywords

Navigation