Skip to main content

Advertisement

Log in

PROX1 lymphatic density correlates with adverse clinicopathological factors, lymph node metastases and survival in neuroblastomas

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Increased lymphatic density correlates with lymph node metastases and survival in some epithelial cancers. The transcription factor, Prospero-related homeobox-gene 1, PROX1, plays an important role in the differentiation and proliferation of the lymphatic and nervous systems. We studied the clinicopathological significance of PROX1 expression in neuroblastomas (NBs) as the majority of patients have lymphatic and/or haematogenous metastases at diagnosis. PROX1-immunostained lymphatic vessels were present in 40/69 (58%) of NBs and 1/6 benign ganglioneuromas (GNs). Lymphatic density (LD) counts were significantly increased in NBs from patients with unfavourable clinical and pathological factors, and with distant lymph node metastases (LNM). Lymphatic invasion (LI) by tumoral emboli was present in 27/40 (68%) of NBs. A significantly higher proportion of LI was seen in undifferentiated/poorly-differentiated, (UD/PD) compared with differentiated NBs. LI was increased in NBs from patients with advanced-stage and high-risk group. Nuclear-PROX1 expression in tumoral cells was present in 35/69 (51%) NBs but was absent in all GNs. PROX1 expression was significantly higher in UD/PD compared with differentiated NBs. It was also higher in NBs with all adverse clinicopathological and biological variables. LI, PROX1 cellular expression and high LD correlated with a shorter overall survival and event-free survival (EFS). Multivariable Cox regression analysis showed that the effect of LD on both OS and EFS was independent of mitosis-karyorrhexis index and MYCN amplification. Increased LD, LI and cellular expression correlated with adverse factors in NBs. Increased LD correlated with LNM suggesting that PROX1 contributes to neuroblastoma progression and lymphatic spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Maris JM (2010) Recent advances in neuroblastoma. N Engl J Med 362:2202–2211

    Article  PubMed  CAS  Google Scholar 

  2. Cotterill SJ, Pearson AD, Pritchard J, Foot AB, Roald B, Kohler JA, Imeson J (2000) Clinical prognostic factors in 1277 patients with neuroblastoma: results of The European Neuroblastoma Study Group ‘Survey’ 1982–1992. Eur J Cancer 36:901–908

    Article  PubMed  CAS  Google Scholar 

  3. Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, Faldum A, Hero B, Iehara T, Machin D, Mosseri V, Simon T, Garaventa A, Castel V, Matthay KK (2009) The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol 27:289–297

    Article  PubMed  Google Scholar 

  4. Shimada H, Ambros IM, Dehner LP, Hata J, Joshi VV, Roald B, Stram DO, Gerbing RB, Lukens JN, Matthay KK, Castleberry RP (1999) The international neuroblastoma pathology classification (the Shimada system). Cancer 86:364–372

    Article  PubMed  CAS  Google Scholar 

  5. Rossler J, Taylor M, Geoerger B, Farace F, Lagodny J, Peschka-Suss R, Niemeyer CM, Vassal G (2008) Angiogenesis as a target in neuroblastoma. Eur J Cancer 44:1645–1656

    Article  PubMed  Google Scholar 

  6. Lagodny J, Juttner E, Kayser G, Niemeyer CM, Rossler J (2007) Lymphangiogenesis and its regulation in human neuroblastoma. Biochem Biophys Res Commun 352:571–577

    Article  PubMed  CAS  Google Scholar 

  7. Ribatti D, Nico B, Cimpean AM, Raica M (2010) Podoplanin and LYVE-1 expression in lymphatic vessels of human neuroblastoma. J Neurooncol 100:151–152

    Article  PubMed  Google Scholar 

  8. Becker J, Wang B, Pavlakovic H, Buttler K, Wilting J (2010) Homeobox transcription factor Prox1 in sympathetic ganglia of vertebrate embryos: correlation with human stage 4s neuroblastoma. Pediatr Res 68:112–117

    Article  PubMed  CAS  Google Scholar 

  9. Becker J, Pavlakovic H, Ludewig F, Wilting F, Weich HA, Albuquerque R, Ambati J, Wilting J (2010) Neuroblastoma progression correlates with downregulation of the lymphangiogenesis inhibitors VEGFR-2. Clin Cancer Res 16:1431–1441

    Article  PubMed  CAS  Google Scholar 

  10. Eggert A, Ikegaki N, Kwiatkowski J, Zhao H, Brodeur GM, Himelstein BP (2000) High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clin Cancer Res 6:1900–1908

    PubMed  CAS  Google Scholar 

  11. Komuro H, Kaneko S, Kaneko M, Nakanishi Y (2001) Expression of angiogenic factors and tumor progression in human neuroblastoma. J Cancer Res Clin Oncol 127:739–743

    PubMed  CAS  Google Scholar 

  12. Nowicki M, Konwerska A, Ostalska-Nowicka D, Derwich K, Miskowiak B, Kondraciuk B, Samulak D, Witt M (2008) Vascular endothelial growth factor (VEGF)-C: a potent risk factor in children diagnosed with stadium 4 neuroblastoma. Folia Histochem Cytobiol 46:493–499

    Article  PubMed  Google Scholar 

  13. Sleeman JP, Thiele W (2009) Tumor metastasis and the lymphatic vasculature. Int J Cancer 125:2747–2756

    Article  PubMed  CAS  Google Scholar 

  14. Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, Oliver G (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21:1505–1513

    Article  PubMed  CAS  Google Scholar 

  15. Griffiths RL, Hidalgo A (2004) Prospero maintains the mitotic potential of glial precursors enabling them to respond to neurons. EMBO J 23:2440–2450

    Article  PubMed  CAS  Google Scholar 

  16. Van der Auwera I, Cao Y, Tille JC, Pepper MS, Jackson DG, Fox SB, Harris AL, Dirix LY, Vermeulen PB (2006) First international consensus on the methodology of lymphangiogenesis quantification in solid human tumours. Br J Cancer 95:1611–1625

    Article  PubMed  Google Scholar 

  17. Dungwa J, Uparkar U, May M, Ramani P (2012) Angiogenin up-regulation correlates with adverse clinicopathological and biological factors, increased microvascular density and poor patient outcome in neuroblastomas. Histopathology. doi:10:1111/j.1365-2559.2012.04176.x

    Google Scholar 

  18. Hong YK, Detmar M (2003) Prox1, master regulator of the lymphatic vasculature phenotype. Cell Tissue Res 314:85–92

    Article  PubMed  Google Scholar 

  19. Dadras SS, Skrzypek A, Nguyen L, Shin JW, Schulz MM, Arbiser J, Mihm MC, Detmar M (2008) Prox-1 promotes invasion of kaposiform hemangioendotheliomas. J Invest Dermatol 128:2798–2806

    Article  PubMed  CAS  Google Scholar 

  20. Sleeman J, Schmid A, Thiele W (2009) Tumor lymphatics. Semin Cancer Biol 19:285–297

    Article  PubMed  CAS  Google Scholar 

  21. Scotting PJ, Walker DA, Perilongo G (2005) Childhood solid tumours: a developmental disorder. Nat Rev Cancer 5:481–488

    Article  PubMed  CAS  Google Scholar 

  22. Torii M, Matsuzaki F, Osumi N, Kaibuchi K, Nakamura S, Casarosa S, Guillemot F, Nakafuku M (1999) Transcription factors Mash-1 and Prox-1 delineate early steps in differentiation of neural stem cells in the developing central nervous system. Development 126:443–456

    PubMed  CAS  Google Scholar 

  23. Elsir T, Eriksson A, Orrego A, Lindstrom MS, Nister M (2010) Expression of PROX1 is a common feature of high-grade malignant astrocytic gliomas. J Neuropathol Exp Neurol 69:129–138

    Article  PubMed  CAS  Google Scholar 

  24. Petrova TV, Nykanen A, Norrmen C, Ivanov KI, Andersson LC, Haglund C, Puolakkainen P, Wempe F, von Melchner H, Gradwohl G, Vanharanta S, Aaltonen LA, Saharinen J, Gentile M, Clarke A, Taipale J, Oliver G, Alitalo K (2008) Transcription factor PROX1 induces colon cancer progression by promoting the transition from benign to highly dysplastic phenotype. Cancer Cell 13:407–419

    Article  PubMed  CAS  Google Scholar 

  25. Shimoda M, Takahashi M, Yoshimoto T, Kono T, Ikai I, Kubo H (2006) A homeobox protein, prox1, is involved in the differentiation, proliferation, and prognosis in hepatocellular carcinoma. Clin Cancer Res 12:6005–6011

    Article  PubMed  CAS  Google Scholar 

  26. Versmold B, Felsberg J, Mikeska T, Ehrentraut D, Kohler J, Hampl JA, Rohn G, Niederacher D, Betz B, Hellmich M, Pietsch T, Schmutzler RK, Waha A (2007) Epigenetic silencing of the candidate tumor suppressor gene PROX1 in sporadic breast cancer. Int J Cancer 121:547–554

    Article  PubMed  CAS  Google Scholar 

  27. Yoshimoto T, Takahashi M, Nagayama S, Watanabe G, Shimada Y, Sakasi Y, Kubo H (2007) RNA mutations of prox1 detected in human esophageal cancer cells by the shifted termination assay. Biochem Biophys Res Commun 359:258–262

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Above and Beyond Charities of the University Hospitals Bristol Foundation Trust and Ince and Company for their financial support. The authors are grateful to Mr. P.B. Savage for providing laboratory facilities, and to Josiah Dungwa, Alison Headford, Emile Sowa Avugrah and Mike Luckett for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramila Ramani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramani, P., Norton, A., Somerville, M.S. et al. PROX1 lymphatic density correlates with adverse clinicopathological factors, lymph node metastases and survival in neuroblastomas. J Neurooncol 108, 375–383 (2012). https://doi.org/10.1007/s11060-012-0838-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-0838-z

Keywords

Navigation