Skip to main content
Log in

Chlorotoxin-conjugated nanoparticles as potential glioma-targeted drugs

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Development of glioma-specific nanoparticles has been an area of intense research over the past several years. Iron oxide, multifunctional superparamagnetic, and NaYF4:Yb,rare-earth upconversion nanoparticles, conjugated with chlorotoxin (CTX, a key toxin in scorpion venom which has been shown to bind specifically to glioma cell surface as a specific chloride channel and matrix metalloproteinase-2 blocker), exhibit high affinity for glioma and direct tumor visualization. We review the latest improvements of CTX-modified nanoparticle platforms which might enable development of more effective therapeutic agents in clinical treatment of glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitesides GM (2003) The ‘right’ size in nanobiotechnology. Nat Biotechnol 21:1161–1165

    Article  PubMed  CAS  Google Scholar 

  2. Cooper DR, Nadeau JL (2009) Nanotechnology for in vitro neuroscience. Nanoscale 1:183–200

    Article  PubMed  CAS  Google Scholar 

  3. Weissleder R (2006) Molecular imaging in cancer. Science 312:1168–1171

    Article  PubMed  CAS  Google Scholar 

  4. Veiseh O, Gunn JW, Kievit FM, Sun C, Fang C, Lee JS, Zhang M (2009) Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small 5:256–264

    Article  PubMed  CAS  Google Scholar 

  5. Veiseh O, Kievit FM, Gunn JW, Ratner BD, Zhang M (2009) A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials 30:649–657

    Article  PubMed  CAS  Google Scholar 

  6. Veiseh O, Sun C, Fang C, Bhattarai N, Gunn J, Kievit F, Du K, Pullar B, Lee D, Ellenbogen RG, Olson J, Zhang M (2009) Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res 69:6200–6207

    Article  PubMed  CAS  Google Scholar 

  7. Butterworth MD, Illum L, Davis SS (2001) Preparation of ultrafine silica- and PEG-coated magnetite particles. Colloids Surf A 179:93–102

    Article  CAS  Google Scholar 

  8. Sun C, Du K, Fang C, Bhattarai N, Veiseh O, Kievit F, Stephen Z, Lee D, Ellenbogen RG, Ratner B, Zhang MQ (2010) PEG-mediated synthesis of highly dispersive multifunctional superparamagnetic nanoparticles: their physicochemical properties and function in vivo. ACS Nano 4:2402–2410

    Article  PubMed  CAS  Google Scholar 

  9. Aina OH, Sroka TC, Chen ML, Lam KS (2002) Therapeutic cancer targeting peptides. Biopolymers 66:184–199

    Article  PubMed  CAS  Google Scholar 

  10. Soroceanu L, Gillespie Y, Khazaeli MB, Sontheimer H (1998) Use of chlorotoxin for targeting of primary brain tumors. Cancer Res 58:4871–4879

    PubMed  CAS  Google Scholar 

  11. Olsen ML, Schade S, Lyons SA, Amaral MD, Sontheimer H (2003) Expression of voltage-gated chloride channels in human glioma cells. J Neurosci 23:5572–5582

    PubMed  CAS  Google Scholar 

  12. Mamelak AN, Rosenfeld S, Bucholz R, Raubitschek A, Nabors LB, Fiveash JB, Shen S, Khazaeli MB, Colcher D, Liu A, Osman M, Guthrie B, Schade-Bijur S, Hablitz DM, Alvarez VL, Gonda MA (2006) Phase I single-dose study of intracavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma. J Clin Oncol 24:3644–3650

    Article  PubMed  CAS  Google Scholar 

  13. Deshane J, Garner CC, Sontheimer H (2003) Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J Biol Chem 278:4135–4144

    Article  PubMed  CAS  Google Scholar 

  14. Veiseh M, Gabikian P, Bahrami SB, Veiseh O, Zhang M, Hackman RC, Ravanpay AC, Stroud MR, Kusuma Y, Hansen SJ, Kwok D, Munoz NM, Sze RW, Grady WM, Greenberg NM, Ellenbogen RG, Olson JM (2007) Tumor paint: a chlorotoxin: Cy5.5 bioconjugate for intraoperative visualization of cancer foci. Cancer Res 67:6882–6888

    Article  PubMed  CAS  Google Scholar 

  15. Sun C, Fang C, Stephen Z, Veiseh O, Hansen S, Lee D, Ellenbogen RG, Olson J, Zhang M (2008) Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles. Nanomedicine (Lond) 3:495–505

    Article  CAS  Google Scholar 

  16. Mok H, Veiseh O, Fang C, Kievit FM, Wang FY, Park JO, Zhang M (2010) pH-sensitive siRNA nanovector for targeted gene silencing and cytotoxic effect in cancer cells. Mol Pharm 7:1930–1939

    Article  PubMed  CAS  Google Scholar 

  17. Yu XF, Sun Z, Li M, Xiang Y, Wang QQ, Tang F, Wu Y, Cao Z, Li WX (2010) Neurotoxin-conjugated up conversion nanoprobes for direct visualization of tumors under near-infrared irradiation. Biomaterials 31:8724–8731

    Article  PubMed  CAS  Google Scholar 

  18. Lee MJ, Veiseh O, Bhattarai N, Sun C, Hansen SJ, Ditzler S, Knoblaugh S, Lee D, Ellenbogen R, Zhang M, Olson JM (2010) Rapid pharmacokinetic and biodistribution studies using cholorotoxin-conjugated iron oxide nanoparticles: a novel non-radioactive method. PLoS One 5:e9536

    Article  PubMed  Google Scholar 

  19. Wan J, Meng X, Liu E, Chen K (2010) Incorporation of magnetite nanoparticle clusters in fluorescent silica nanoparticles for high-performance brain tumor delineation. Nanotechnology 21:235104

    Article  PubMed  Google Scholar 

  20. Veiseh O, Kievit FM, Fang C, Mu N, Jana S, Leung MC, Mok H, Ellenbogen RG, Park JO, Zhang M (2010) Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials 31:8032–8042

    Article  PubMed  CAS  Google Scholar 

  21. Kievit FM, Veiseh O, Fang C, Bhattarai N, Lee D, Ellenbogen RG, Zhang M (2010) Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano 4:4587–4594

    Article  PubMed  CAS  Google Scholar 

  22. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445

    Article  PubMed  Google Scholar 

  23. Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B 66:274–280

    Article  CAS  Google Scholar 

  24. Sarin H, Kanevsky AS, Wu H, Brimacombe KR, Fung SH, Sousa AA, Auh S, Wilson CM, Sharma K, Aronova MA, Leapman RD, Griffiths GL, Hall MD (2008) Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Transl Med 6:80

    Article  PubMed  Google Scholar 

  25. McNneil SE (2005) Nanotechnology for the Biologist. J Leukocyte Biol 78:585–594

    Article  Google Scholar 

  26. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44

    Article  PubMed  CAS  Google Scholar 

  27. Wuister SF, de Mello Donega′ C, de Mello Donega′ C, Meijerink A (2004) Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J Phys Chem B 108:17393–17397

    Article  CAS  Google Scholar 

  28. Bridot JL, Faure AC, Laurent S, Rivière C, Billotey C, Hiba B, Janier M, Josserand V, Coll JL, Elst LV, Muller R, Roux S, Perriat P, Tillement O (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129:5076–5084

    Article  PubMed  CAS  Google Scholar 

  29. Na HB, Lee JH, An K, Park YI, Park M, Lee IS, Nam DH, Kim ST, Kim SH, Kim SW, Lim KH, Kim KS, Kim SO, Hyeon T (2007) Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed Engl 46:5397–5401

    Article  PubMed  CAS  Google Scholar 

  30. Chen F, Zhang M (2009) Multifunctional magnetic nanoparticles for medical imaging applications. J Mater Chem 19:6258–6266

    Article  Google Scholar 

  31. Cheon J, Lee JH (2008) Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res 41:1630–1640

    Article  PubMed  CAS  Google Scholar 

  32. Gilert A, Machluf M (2010) Nano to micro delivery systems: targeting angiogenesis in brain tumors. J Angiogenes Res 2:20

    Article  PubMed  Google Scholar 

  33. Laurent S, Forge D, Port M, Roch A, Robic C, Vander EL, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  PubMed  CAS  Google Scholar 

  34. Sheng Y, Liu C, Yuan Y, Tao X, Yang F, Shan X, Zhou H, Xu F (2009) Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water soluble chitosan. Biomaterials 30:2340–2348

    Article  PubMed  CAS  Google Scholar 

  35. Mok H, Park JW, Park TG (2008) Enhanced intracellular delivery of quantum dot and adenovirus nanoparticles triggered by acidic pH via surface charge reversal. Bioconiugate Chem 19:797–801

    Article  CAS  Google Scholar 

  36. Lee JH, Lee K, Moon SH, Lee Y, Park TG, Cheon J (2009) All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed Engl 48:4174–4179

    Article  PubMed  CAS  Google Scholar 

  37. Kievit FM, Veiseh O, Bhattarai N, Fang C, Gunn JW, Lee D, Ellenbogen RG, Olson JM, Zhang M (2009) PEI-PEG-Chitosan copolymer coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv Funct Mater 19:2244–2251

    Article  PubMed  CAS  Google Scholar 

  38. Fang C, Bhattarai N, Sun C, Zhang M (2009) Functionalized nanoparticles with long-term stability in biological media. Small 5:1637–1641

    Article  PubMed  CAS  Google Scholar 

  39. Céline B, Laurence P, Christelle L, Pierre F, Catherine P, Brigitte G (2007) Cytotoxicity of polyethyleneimine (PEI), precursor base layer of polyelectrolyte multilayer films. Biomaterials 28:632–640

    Article  Google Scholar 

  40. Kumar M, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084

    Article  PubMed  Google Scholar 

  41. Lippens G, Najib J, Wodak SJ, Tartar A (1995) NMR sequential assignments and solution structure of chlorotoxin, a small scorpion toxin that blocks chloride channels. Biochemistry 34:13–21

    Article  PubMed  CAS  Google Scholar 

  42. Mamelak AN, Jacoby DB (2007) Targeted delivery of antitumoral therapy to glioma and other malignancies with synthetic chlorotoxin (TM-601). Drug Deliv 4:175–186

    CAS  Google Scholar 

  43. Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, Bhattarai N, Ellenbogen R, Rze R, Hallahan A, Olson J, Zhang M (2005) Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5:1003–1008

    Article  PubMed  CAS  Google Scholar 

  44. Liu M, Li H, Luo G, Liu Q, Wang Y (2008) Pharmacokinetics and biodistribution of surface modification polymeric nanoparticles. Arch Pharm Res 31:547–554

    Article  PubMed  CAS  Google Scholar 

  45. Wu XS, Jian XC, Yin B, He ZJ (2010) Development of the research on the application of chlorotoxin in imaging diagnostics and targeted therapies for tumors. Chin J Cancer 29:626–630

    PubMed  CAS  Google Scholar 

  46. McNeish IA, Bell SJ, Lemoine NR (2004) Gene therapy progress and prospects: cancer gene therapy using tumour suppressor genes. Gene Ther 11:497–503

    Article  PubMed  CAS  Google Scholar 

  47. Li SD, Huang L (2006) Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene Ther 13:1313–1319

    Article  PubMed  CAS  Google Scholar 

  48. Palmer DH, Young LS, Mautner V (2006) Cancer gene-therapy: clinical trials. Trends Biotechnol 24:76–82

    Article  PubMed  CAS  Google Scholar 

  49. Alton E, Ferrari S, Griesenbach U (2007) Progress and prospects: gene therapy clinical trials (part 2). Gene Ther 14:1555–1563

    Article  PubMed  Google Scholar 

  50. Fu YJ, Du J, Yang RJ, Yin LT, Liang AH (2010) Potential adenovirus-mediated gene therapy of glioma cancer. Biotechnol Lett 32:11–18

    Article  PubMed  CAS  Google Scholar 

  51. Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    Article  PubMed  CAS  Google Scholar 

  52. Godbey WT, Wu KK, Mikos AG (1999) Poly(ethylenimine) and its role in gene delivery. J Control Release 60:149–160

    Article  PubMed  CAS  Google Scholar 

  53. Kircheis R, Wightman L, Wagner E (2001) Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev 53:341–358

    Article  PubMed  CAS  Google Scholar 

  54. Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  PubMed  CAS  Google Scholar 

  55. Dykxhoorn DM, Chowdhury D, Lieberman J (2008) RNA interference and cancer: endogenous pathways and therapeutic approaches. Adv Exp Med Biol 615:299–329

    Article  PubMed  CAS  Google Scholar 

  56. Oh YK, Park TG (2009) siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev 61:850–862

    Article  PubMed  CAS  Google Scholar 

  57. Caruso G, Caffo M, Alafaci C, Raudino G, Cafarella D, Lucerna S, Salpietro FM, Tomasello F (2011) Could nanoparticle systems have a role in the treatment of cerebral gliomas? Nanomedicine. doi:10.1016/j.nano.2011.02.008

  58. Giuseppe R, Mariella C, Concetta A, Gerardo C (2011) Nanoparticle-based cerebral drug-delivery systems and antiangiogenic approach in gliomas treatment. Recent Pat Nanotechnol (In press)

  59. Mohanraj VJ, Chen Y (2006) Nanoparticles—a review. Trop J Pharm Res 5:561–573

    Google Scholar 

Download references

Acknowledgments

This project was supported by grants from the National Natural Science Foundation of China (Nos. 30700534, 31071924), the Natural Science Foundation of Shanxi Province (2008021039, 2010011040-1), and the Innovative Research Program for Graduates of Shanxi Province (20113018) and Shanxi Scholarship Council of China.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejun Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Y., An, N., Li, K. et al. Chlorotoxin-conjugated nanoparticles as potential glioma-targeted drugs. J Neurooncol 107, 457–462 (2012). https://doi.org/10.1007/s11060-011-0763-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0763-6

Keywords

Navigation