Skip to main content
Log in

Therapeutic doses of cranial irradiation induce hippocampus-dependent cognitive deficits in young mice

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Fractionated cranial irradiation is an essential part of treatment in the management of cohorts of pediatric brain tumor and leukemia patients. Ionizing radiation damages normal brain parenchyma through a variety of poorly understood mechanisms and results in cognitive dysfunction and significant life-long disability. The goal of our study was to establish and characterize a mouse model of radiation-induced damage to the developing nervous system. Male C57BL/6 mice were exposed to a total dose of 20 Gy of fractionated cranial irradiation at 1 month of age to assess the early and late effects of clinically relevant irradiation doses on the young mouse brain. Compared to age-matched controls, an acute and prolonged decrease in proliferation and the number of immature neurons in the stem cell niche of the hippocampal subgranular zone within the dentate gyrus at 72 h and 1 month following cranial irradiation was noted. Behavioral characterization at 1 and 5 months post-radiation demonstrated significant, persistent and progressive hippocampus-dependent learning deficits. Our study characterizes a clinically relevant mouse model of radiation-induced damage that serves as a platform for future evaluation of therapeutic interventions that may mitigate such cognitive damage. Our research also emphasizes the need for targeted treatment strategies that protect regions of neurogenesis while maximizing therapeutic effects in pediatric cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. CBTRUS (2011) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2004–2007. Source: Central Brain Tumor Registry of the United States, Hinsdale. www.cbtrus.org

  2. Armstrong GT et al (2010) Region-specific radiotherapy and neuropsychological outcomes in adult survivors of childhood CNS malignancies. Neuro Oncol 12(11):1173–1186

    Google Scholar 

  3. Langer T et al (2002) CNS late-effects after ALL therapy in childhood. Part III: neuropsychological performance in long-term survivors of childhood ALL: impairments of concentration, attention, and memory. Med Pediatr Oncol 38(5):320–328

    Article  PubMed  Google Scholar 

  4. Ellenberg L et al (2009) Neurocognitive status in long-term survivors of childhood CNS malignancies: a report from the Childhood Cancer Survivor Study. Neuropsychology 23(6):705–717

    Article  PubMed  Google Scholar 

  5. Ellenberg L et al (1987) Factors affecting intellectual outcome in pediatric brain tumor patients. Neurosurgery 21(5):638–644

    Article  PubMed  CAS  Google Scholar 

  6. Jankovic M et al (1994) Association of 1800 cGy cranial irradiation with intellectual function in children with acute lymphoblastic leukaemia. ISPACC. International Study Group on Psychosocial Aspects of Childhood Cancer. Lancet 344(8917):224–227

    Article  PubMed  CAS  Google Scholar 

  7. Fouladi M et al (2005) Intellectual and functional outcome of children 3 years old or younger who have CNS malignancies. J Clin Oncol 23(28):7152–7160

    Article  PubMed  Google Scholar 

  8. Crossen JR et al (1994) Neurobehavioral sequelae of cranial irradiation in adults: a review of radiation-induced encephalopathy. J Clin Oncol 12(3):627–642

    PubMed  CAS  Google Scholar 

  9. Lee AW et al (2002) Factors affecting risk of symptomatic temporal lobe necrosis: significance of fractional dose and treatment time. Int J Radiat Oncol Biol Phys 53(1):75–85

    Article  PubMed  Google Scholar 

  10. Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253(5026):1380–1386

    Article  PubMed  CAS  Google Scholar 

  11. Clark L, Chamberlain SR, Sahakian BJ (2009) Neurocognitive mechanisms in depression: implications for treatment. Annu Rev Neurosci 32:57–74

    Article  PubMed  CAS  Google Scholar 

  12. Santarelli L et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634):805–809

    Article  PubMed  CAS  Google Scholar 

  13. Kim JS et al (2008) Transient impairment of hippocampus-dependent learning and memory in relatively low-dose of acute radiation syndrome is associated with inhibition of hippocampal neurogenesis. J Radiat Res (Tokyo) 49(5):517–526

    Article  CAS  Google Scholar 

  14. Raber J et al (2004) Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res 162(1):39–47

    Article  PubMed  CAS  Google Scholar 

  15. Rola R et al (2004) Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol 188(2):316–330

    Article  PubMed  CAS  Google Scholar 

  16. Snyder JS et al (2005) A role for adult neurogenesis in spatial long-term memory. Neuroscience 130(4):843–852

    Article  PubMed  CAS  Google Scholar 

  17. Madsen TM et al (2003) Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience 119(3):635–642

    Article  PubMed  CAS  Google Scholar 

  18. Eriksson PS et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317

    Article  PubMed  CAS  Google Scholar 

  19. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660

    Article  PubMed  CAS  Google Scholar 

  20. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16(6):2027–2033

    PubMed  CAS  Google Scholar 

  21. Suh H, Deng W, Gage FH (2009) Signaling in adult neurogenesis. Annu Rev Cell Dev Biol 25:253–275

    Article  PubMed  CAS  Google Scholar 

  22. van Praag H et al (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96(23):13427–13431

    Article  PubMed  Google Scholar 

  23. Bruel-Jungerman E, Laroche S, Rampon C (2005) New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur J Neurosci 21(2):513–521

    Article  PubMed  Google Scholar 

  24. van Praag H et al (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25(38):8680–8685

    Article  PubMed  Google Scholar 

  25. Shors TJ et al (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410(6826):372–376

    Article  PubMed  CAS  Google Scholar 

  26. Saxe MD et al (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA 103(46):17501–17506

    Article  PubMed  CAS  Google Scholar 

  27. Galvin KE, Ye H, Wetmore C (2007) Differential gene induction by genetic and ligand-mediated activation of the Sonic hedgehog pathway in neural stem cells. Dev Biol 308(2):331–342

    Article  PubMed  CAS  Google Scholar 

  28. Mizumatsu S et al (2003) Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res 63(14):4021–4027

    PubMed  CAS  Google Scholar 

  29. Raber J et al (1998) Isoform-specific effects of human apolipoprotein E on brain function revealed in ApoE knockout mice: increased susceptibility of females. Proc Natl Acad Sci USA 95(18):10914–10919

    Article  PubMed  CAS  Google Scholar 

  30. Chen J et al (2007) The type 1 equilibrative nucleoside transporter regulates anxiety-like behavior in mice. Genes Brain Behav 6(8):776–783

    Article  PubMed  CAS  Google Scholar 

  31. Benice TS et al (2006) Sex-differences in age-related cognitive decline in C57BL/6J mice associated with increased brain microtubule-associated protein 2 and synaptophysin immunoreactivity. Neuroscience 137(2):413–423

    Article  PubMed  CAS  Google Scholar 

  32. Vitali R, Clarke S (2004) Improved rotorod performance and hyperactivity in mice deficient in a protein repair methyltransferase. Behav Brain Res 153(1):129–141

    Article  PubMed  CAS  Google Scholar 

  33. Gleeson JG et al (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23(2):257–271

    Article  PubMed  CAS  Google Scholar 

  34. Naylor AS et al (2008) Voluntary running rescues adult hippocampal neurogenesis after irradiation of the young mouse brain. Proc Natl Acad Sci USA 105(38):14632–14637

    Article  PubMed  CAS  Google Scholar 

  35. Monje ML et al (2002) Irradiation induces neural precursor-cell dysfunction. Nat Med 8(9):955–962

    Article  PubMed  CAS  Google Scholar 

  36. Monje ML et al (2007) Impaired human hippocampal neurogenesis after treatment for central nervous system malignancies. Ann Neurol 62(5):515–520

    Article  PubMed  Google Scholar 

  37. Peissner W et al (1999) Ionizing radiation-induced apoptosis of proliferating stem cells in the dentate gyrus of the adult rat hippocampus. Brain Res Mol Brain Res 71(1):61–68

    Article  PubMed  CAS  Google Scholar 

  38. Parent JM et al (1999) Inhibition of dentate granule cell neurogenesis with brain irradiation does not prevent seizure-induced mossy fiber synaptic reorganization in the rat. J Neurosci 19(11):4508–4519

    PubMed  CAS  Google Scholar 

  39. Fushiki S et al (1997) Short- and long-term effects of low-dose prenatal X-irradiation in mouse cerebral cortex, with special reference to neuronal migration. Acta Neuropathol 93(5):443–449

    Article  PubMed  CAS  Google Scholar 

  40. Ben Abdallah NM, Slomianka L, Lipp HP (2007) Reversible effect of X-irradiation on proliferation. Neurogenesis, and cell death in the dentate gyrus of adult mice. Hippocampus 17(12):1230–1240

    Article  PubMed  Google Scholar 

  41. Thoms, J, Bristow RG (2010) DNA repair targeting and radiotherapy: a focus on the therapeutic ratio. Semin Radiat Oncol 20(4):217–222

    Google Scholar 

  42. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(5651):1760–1765

    Article  PubMed  CAS  Google Scholar 

  43. Achanta P, Fuss M, Martinez JL Jr (2009) Ionizing radiation impairs the formation of trace fear memories and reduces hippocampal neurogenesis. Behav Neurosci 123(5):1036–1045

    Article  PubMed  Google Scholar 

  44. Squire LR (2004) Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem 82(3):171–177

    Article  PubMed  Google Scholar 

  45. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31(1):47–59

    Article  PubMed  CAS  Google Scholar 

  46. Mumby DG (2001) Perspectives on object-recognition memory following hippocampal damage: lessons from studies in rats. Behav Brain Res 127(1–2):159–181

    Article  PubMed  CAS  Google Scholar 

  47. Hammond RS, Tull LE, Stackman RW (2004) On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol Learn Mem 82(1):26–34

    Article  PubMed  Google Scholar 

  48. Pui CH (2006) Central nervous system disease in acute lymphoblastic leukemia: prophylaxis and treatment. Hematol Am Soc Hematol Educ Program 2006:142–146

  49. Hodges H et al (1998) Late behavioural and neuropathological effects of local brain irradiation in the rat. Behav Brain Res 91(1–2):99–114

    Article  PubMed  CAS  Google Scholar 

  50. Akiyama K et al (2001) Cognitive dysfunction and histological findings in adult rats one year after whole brain irradiation. Neurol Med Chir (Tokyo) 41(12):590–598

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge and thank Doo-Sup Choi for his valuable suggestions and for providing us with equipment for the behavioral tests and Reghann LaFrance-Corey for providing us with technical assistance. This research was supported by funding from the National Cancer Institute, Waterman Family Foundation for Cancer Genetics and the Department of Pediatric and Adolescent Medicine Research Grant, Mayo Clinic, Rochester.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia Wetmore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nageswara Rao, A.A., Ye, H., Decker, P.A. et al. Therapeutic doses of cranial irradiation induce hippocampus-dependent cognitive deficits in young mice. J Neurooncol 105, 191–198 (2011). https://doi.org/10.1007/s11060-011-0582-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0582-9

Keywords

Navigation