Skip to main content

Advertisement

Log in

Tissue concentration of systemically administered antineoplastic agents in human brain tumors

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The blood–brain-barrier (BBB) limits the penetration of many systemic antineoplastic therapies. Consequently, many agents may be used in clinical studies and clinical practice though they may not achieve therapeutic levels within the tumor. We sought to compile the currently available human data on antineoplastic drug concentrations in brain and tumor tissue according to BBB status. A review of the literature was conducted for human studies providing concentrations of antineoplastic agents in blood and metastatic brain tumors or high-grade gliomas. Studies were considered optimal if they reported simultaneous tissue and blood concentration, multiple sampling times and locations, MRI localization, BBB status at sampling site, tumor histology, and individual subject data. Twenty-Four studies of 19 compounds were included. These examined 18 agents in contrast-enhancing regions of high-grade gliomas, with optimal data for 2. For metastatic brain tumors, adequate data was found for 9 agents. Considerable heterogeneity was found in the measurement value, tumor type, measurement timing, and sampling location within and among studies, limiting the applicability of the results. Tissue to blood ratios ranged from 0.054 for carboplatin to 34 for mitoxantrone in high-grade gliomas, and were lowest for temozolomide (0.118) and etoposide (0.116), and highest for mitoxantrone (32.02) in metastatic tumors. The available data examining the concentration of antineoplastic agents in brain and tumor tissue is sparse and limited by considerable heterogeneity. More studies with careful quantification of antineoplastic agents in brain and tumor tissue is required for the rational development of therapeutic regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Motl S, Zhuang Y, Waters CM, Stewart CF (2006) Pharmacokinetic considerations in the treatment of CNS tumours. Clin Pharmacokinet 45:871

    Article  PubMed  CAS  Google Scholar 

  2. Cecchelli R, Berezowski V, Lundquist S et al (2007) Modelling of the blood-brain barrier in drug discovery, development. Nat Rev Drug Discov 6:650

    Article  PubMed  CAS  Google Scholar 

  3. Abbott N (2004) Prediction of blood-brain barrier permeation in drug discovery from in vivo, in vitro, in silico models. Drug Discov Today Technol 1:407

    Article  CAS  Google Scholar 

  4. Muldoon LL, Soussain C, Jahnke K et al (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25:2295

    Article  PubMed  CAS  Google Scholar 

  5. Collins J, Dedrick R (1983) Distributed model for drug deliver to CSF and brain tissue. Am J Physiol Regul Integr Comp Physiol 245:R303

    CAS  Google Scholar 

  6. de Lange E, Danhof M (2002) Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood, brain. Clin Pharmacokinet 41:691

    Article  PubMed  Google Scholar 

  7. Pardridge W (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRX J Am Soc Exp NeuroTher 2:3

    Google Scholar 

  8. Miller DS, Bauer B, Hartz AMS (2008) Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev 60:196

    Article  PubMed  CAS  Google Scholar 

  9. Nies A (2007) The role of membrane transporters in drug delivery to brain tumors. Cancer Lett 254:11

    Article  PubMed  CAS  Google Scholar 

  10. Dallas S, Miller DS, Bendayan R (2006) Multidrug resistance-associated proteins: expression, function in the central nervous system. Pharmacol Rev 58:140

    Article  PubMed  CAS  Google Scholar 

  11. Norinder U, Haeberlein M (2002) Computational approaches to the prediction of the blood-brain distribution. Adv Drug Deliv Rev 54:291

    Article  PubMed  CAS  Google Scholar 

  12. Winkler D, Burden F (2004) Modelling blood-brain barrier partitioning using Bayesian neural nets. J Mol Graph Model 22:499

    Article  PubMed  CAS  Google Scholar 

  13. Basak S, Gute B, Drewes L (1996) Predicting blood-brain transport of drugs: a computational approach. Pharm Res 13

  14. Clark DE (2003) In silico prediction of blood-brain barrier permeation. Drug Discov Today 8:927

    Article  PubMed  CAS  Google Scholar 

  15. Sarin H (2009) Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors. J Transl Med 7

  16. Groothuis D, Vick N (1982) Brain tumors and the blood-brain barrier. Trends Neurosci 5

  17. Essig M, Weber M, Von Tengg-Kobligk H, et al (2006) Contrast-enhanced magnetic resonance imaging of central nervous system tumors: agents, mechanisms, and applications. Top Magn Reson Imaging 17

  18. Blakeley JO, Olson J, Grossman SA et al (2009) Effect of blood brain barrier permeability in recurrent high grade gliomas on the intratumoral pharmacokinetics of methotrexate: a microdialysis study. J Neurooncol 91:51

    Article  PubMed  CAS  Google Scholar 

  19. Ma J, Pulfer S, Li S et al (2001) Pharmacodynamic-mediated reduction of temozolomide tumor concentrations by the angiogenesis inhibitor TNP-470. Cancer Res 61:5491

    PubMed  CAS  Google Scholar 

  20. Claes A, Wesseling P, Jeuken J et al (2008) Antiangiogenic compounds interfere with chemotherapy of brain tumors due to vessel normalization. Mol Cancer Ther 7:71

    Article  PubMed  CAS  Google Scholar 

  21. Bickel U (2005) How to measure drug transport across the blood-brain-barrier. NeuroRX J Am Soc Exp NeuroTher 2:15

    Google Scholar 

  22. Sarin H, Kanevsky A, Wu H et al (2008) Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Transl Med 6:80

    Article  PubMed  Google Scholar 

  23. Alavijeh M, Palmer A (2009) Measurement of the pharmacokinetics, pharmacodynamics of neuroactive compounds. Neurobiol Dis 37:38

    Article  PubMed  Google Scholar 

  24. Zhou Q, Gallo J (2005) In vivo microdialysis for PK, PD studies of anticancer drugs. AAPS J 7:E659

    Article  PubMed  CAS  Google Scholar 

  25. Blakeley J (2008) Drug delivery to brain tumors. Curr Neurol Neurosci Rep 8:235

    Article  PubMed  CAS  Google Scholar 

  26. Portnow J, Badie B, Chen M et al (2009) The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clin Cancer Res 15:7092

    Article  PubMed  CAS  Google Scholar 

  27. Shinohara C, Matsumoto K, Kuriyama M et al (1994) Clinical pharmacokinetics of carboplatin, MCNU. Gan to kagaku ryoho. Cancer Chemother 21:1163

    CAS  Google Scholar 

  28. Whittle IR, Malcolm G, Jodrell DI, Reid M (1999) Platinum distribution in malignant glioma following intraoperative intravenous infusion of carboplatin. Br J Neurosurg 13:132

    Article  PubMed  CAS  Google Scholar 

  29. Gilbert M (2007) Tumor tissue delivery of celingitide after intravenous administration to patients with recurrent glioblastoma (GBM): preliminary data from NABTC protocol 03-02. Neuro-oncol 9:525

    Google Scholar 

  30. Nakagawa H, Fujita T, Izumoto S et al (1993) Cis-diamminedichloroplatinum (CDDP) therapy for brain metastasis of lung cancer. I. Distribution within the central nervous system after intravenous, intracarotid infusion. J Neurooncol 16:61

    Article  PubMed  CAS  Google Scholar 

  31. Albrecht KW, Hamer PCdW, Leenstra S, et al (2001) High concentration of Daunorubicin and Daunorubicinol in human malignant astrocytomas after systemic administration of liposomal Daunorubicin. Journal of Neuro-Oncology 53

  32. Zucchetti M, Boiardi A, Silvani A et al (1999) Distribution of daunorubicin, daunorubicinol in human glioma tumors after administration of liposomal daunorubicin. Cancer Chemother Pharmacol 44:173

    Article  PubMed  CAS  Google Scholar 

  33. Raizer JJ, Abrey L, Lassman AB et al (2010) A phase II trial of erlotinib in patients with recurrent malignant gliomas, nonprogressive glioblastoma multiforme postradiation therapy. Neuro Oncol 12:95

    PubMed  CAS  Google Scholar 

  34. Bergenheim AT, Gunnarsson PO, Edman K et al (1993) Uptake, retention of estramustine, the presence of estratmustine binding protein in malignant brain tumours in humans. Br J Cancer 67:358

    Article  PubMed  CAS  Google Scholar 

  35. Zucchetti M, Rossi C, Knerich R et al (1991) Concentrations of VP16, VM26 in human brain tumors. Ann Oncol 2:63

    PubMed  CAS  Google Scholar 

  36. Kiya K, Uozumi T, Ogasawara H et al (1992) Penetration of etoposide into human malignant brain tumors after intravenous, oral administration. Cancer Chemother Pharmacol 29:339

    Article  PubMed  CAS  Google Scholar 

  37. Stewart DJ, Richard MT, Hugenholtz H et al (1984) Penetration of VP-16 (etoposide) into human intracerebral, extracerebral tumors. J Neurooncol 2:133

    PubMed  CAS  Google Scholar 

  38. Hofer S, Frei K (2007) Gefitinib concentrations in human glioblastoma tissue. J Neurooncol 82:175

    Article  PubMed  Google Scholar 

  39. Boogerd W, Tjahja IS, Sandt MMvd, Beijnen JH (1999) Penetration of idarubicin into malignant brain tumor tissue. J Neurooncol 44:65

    Article  PubMed  CAS  Google Scholar 

  40. Holdoff M, Supko J, Gallia GL et al (2009) Intratumoral concentrations of imatinib after oral administration in patients with glioblastoma multiforme. J Neurooncol 97:241

    Article  Google Scholar 

  41. Kuhn JG (2008) Tumor sequestration of lapatinib. Neuro-oncol 10:783

    Google Scholar 

  42. Green RM, Stewart DJ, Hugenholtz H et al (1988) Human central nervous system, plasma pharmacology of mitoxantrone. J Neurooncol 6:75

    Article  PubMed  CAS  Google Scholar 

  43. Heimans JJ, Vermorken JB, Wolbers JB et al (1994) Paclitaxel (TAXOL) concentrations in brain tumor tissue. Ann Oncol 5:951

    PubMed  CAS  Google Scholar 

  44. Fine RL, Chen J, Balmaceda C et al (2006) Randomized study of paclitaxel, tamoxifen deposition into human brain tumors: implications for the treatment of metastatic brain tumors. Clin Cancer Res 12:5770

    Article  PubMed  CAS  Google Scholar 

  45. Whittle IR, MacPherson JS, Miller JD, Smyth JF (1990) The disposition of TCNU (tauromustine) in human malignant glioma: phamacokinetic studies, clinical implications. J Neurosurg 72:721

    Article  PubMed  CAS  Google Scholar 

  46. Kuhn JG, Chang SM, Wen PY et al (2007) Pharmocokinetic and tumor distribution characteristics of temsirolimus. Clin Cancer Res 13:7401

    Article  PubMed  CAS  Google Scholar 

  47. van Tellingen O, Boogerd W, Nooijen WJ, Beijnen JH (1997) The vascular compartment hampers accurate determination of teniposide penetration into brain tumor tissue. Cancer Chemother Pharmacol 40:330

    Article  PubMed  Google Scholar 

  48. Stewart DJ, Richard MT, Hugenholtz H et al (1984) Penetration of teniposide (VM-26) into human intracerebral tumors. J Neurooncol 2:315

    PubMed  CAS  Google Scholar 

  49. Stupp R, Mason WP, Bent MJ et al (2005) Radiotherapy plus concomitant, adjuvant temozolomide for glioblastoma. N Engl J Med 352:987

    Article  PubMed  CAS  Google Scholar 

  50. Franceschi E, Cavallo G, Lonardi S et al (2007) Gefitinib in patients with progressive high-grade gliomas: a multicentre phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br J Cancer 96:1047

    Article  PubMed  CAS  Google Scholar 

  51. Vulpen Mv, Kal HB, Taphoorn MJ, Sharouni SYE (2002) Changes in blood-brain barrier permeability induced by radiotherapy: implications for timing of chemotherapy? Oncol Rep 9:683

    PubMed  Google Scholar 

  52. Martin I (2004) Prediction of blood-brain barrier penetration: are we missing the point? Drug Discov Today 9:161

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marshall W. Pitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitz, M.W., Desai, A., Grossman, S.A. et al. Tissue concentration of systemically administered antineoplastic agents in human brain tumors. J Neurooncol 104, 629–638 (2011). https://doi.org/10.1007/s11060-011-0564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0564-y

Keywords

Navigation