Journal of Neuro-Oncology

, Volume 105, Issue 1, pp 45–56 | Cite as

Differential effects of tumor–platelet interaction in vitro and in vivo in glioblastoma

  • Marc A. Brockmann
  • Birte Bender
  • Elena Plaxina
  • Ingo Nolte
  • Ralf Erber
  • Katrin Lamszus
  • Christoph Groden
  • Lothar Schilling
Laboratory Investigation - Human/Animal Tissue

Abstract

An elevated platelet count is considered an independent predictor of short survival in glioblastoma and various other tumor entities. Prothrombotic activity of the tumor microcirculation resulting in platelet activation and release of cytokines from activated platelets has been suggested to play a role. This study was designed to analyze the effects of platelet-released cytokines on glioblastoma and endothelial cell proliferation and migration in vitro, and the influence of platelet count on glioblastoma growth and angiogenesis in vivo. In cultured human glioblastoma, umbilical cord and cerebral microvascular endothelial cells platelet-released cytokines significantly stimulated proliferation and migration as well as sprouting and formation of capillary-like structures. In vivo, glioblastoma cells were implanted in mice followed by platelet depletion starting 1 or 8 days later. Tumor volume, proliferative index, and vessel density analyzed 14 days after engraftment did not differ between animals with a normal and a low platelet count. Likewise, no effect of platelet depletion over 20 days upon the volume of intracerebrally growing tumors was observed in mice. Additionally, proliferative activity and vessel density determined in tumor samples from patients operated upon glioblastoma did not show any correlation with the patients’ preoperative platelet count. Thus, we conclude that distinct proliferation- and chemotaxis-stimulating effects of platelet-derived cytokines can be achieved in vitro, while the platelet count does not exert a major influence on tumor growth and tumor angiogenesis in GBM in vivo.

Keywords

Angiogenesis Platelets Glioblastoma Thrombosis Animal model 

References

  1. 1.
    Coppinger JA, Cagney G, Toomey S, Kislinger T, Belton O, McRedmond JP, Cahill DJ, Emili A, Fitzgerald DJ, Maguire PB (2004) Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 103:2096–2104PubMedCrossRefGoogle Scholar
  2. 2.
    Mohle R, Green D, Moore MA, Nachman RL, Rafii S (1997) Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci USA 94:663–668PubMedCrossRefGoogle Scholar
  3. 3.
    Wartiovaara U, Salven P, Mikkola H, Lassila R, Kaukonen J, Joukov V, Orpana A, Ristimaki A, Heikinheimo M, Joensuu H, Alitalo K, Palotie A (1998) Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thromb Haemost 80:171–175PubMedGoogle Scholar
  4. 4.
    Heldin CH, Westermark B, Wasteson A (1981) Platelet-derived growth factor. Isolation by a large-scale procedure and analysis of subunit composition. Biochem J 193:907–913PubMedGoogle Scholar
  5. 5.
    Kaplan DR, Chao FC, Stiles CD, Antoniades HN, Scher CD (1979) Platelet alpha granules contain a growth factor for fibroblasts. Blood 53:1043–1052PubMedGoogle Scholar
  6. 6.
    Ben-Ezra J, Sheibani K, Hwang DL, Lev-Ran A (1990) Megakaryocyte synthesis is the source of epidermal growth factor in human platelets. Am J Pathol 137:755–759PubMedGoogle Scholar
  7. 7.
    Nakamura T, Tomita Y, Hirai R, Yamaoka K, Kaji K, Ichihara A (1985) Inhibitory effect of transforming growth factor-beta on DNA synthesis of adult rat hepatocytes in primary culture. Biochem Biophys Res Commun 133:1042–1050PubMedCrossRefGoogle Scholar
  8. 8.
    Karey KP, Marquardt H, Sirbasku DA (1989) Human platelet-derived mitogens. I. Identification of insulinlike growth factors I and II by purification and N alpha amino acid sequence analysis. Blood 74:1084–1092PubMedGoogle Scholar
  9. 9.
    Karey KP, Sirbasku DA (1989) Human platelet-derived mitogens. II. Subcellular localization of insulinlike growth factor I to the alpha-granule and release in response to thrombin. Blood 74:1093–1100PubMedGoogle Scholar
  10. 10.
    White RR, Shan S, Rusconi CP, Shetty G, Dewhirst MW, Kontos CD, Sullenger BA (2003) Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2. Proc Natl Acad Sci USA 100:5028–5033PubMedCrossRefGoogle Scholar
  11. 11.
    Hla T (2004) Physiological and pathological actions of sphingosine 1-phosphate. Semin Cell Dev Biol 15:513–520PubMedCrossRefGoogle Scholar
  12. 12.
    English D, Welch Z, Kovala AT, Harvey K, Volpert OV, Brindley DN, Garcia JG (2000) Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB J 14:2255–2265PubMedCrossRefGoogle Scholar
  13. 13.
    Galt SW, Lindemann S, Allen L, Medd DJ, Falk JM, McIntyre TM, Prescott SM, Kraiss LW, Zimmerman GA, Weyrich AS (2002) Outside-in signals delivered by matrix metalloproteinase-1 regulate platelet function. Circ Res 90:1093–1099PubMedCrossRefGoogle Scholar
  14. 14.
    Fernandez-Patron C, Martinez-Cuesta MA, Salas E, Sawicki G, Wozniak M, Radomski MW, Davidge ST (1999) Differential regulation of platelet aggregation by matrix metalloproteinases-9 and -2. Thromb Haemost 82:1730–1735PubMedGoogle Scholar
  15. 15.
    Jurasz P, Chung AW, Radomski A, Radomski MW (2002) Nonremodeling properties of matrix metalloproteinases: the platelet connection. Circ Res 90:1041–1043PubMedCrossRefGoogle Scholar
  16. 16.
    Iruela-Arispe ML, Bornstein P, Sage H (1991) Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells in vitro. Proc Natl Acad Sci USA 88:5026–5030PubMedCrossRefGoogle Scholar
  17. 17.
    Maione TE, Gray GS, Petro J, Hunt AJ, Donner AL, Bauer SI, Carson HF, Sharpe RJ (1990) Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 247:77–79PubMedCrossRefGoogle Scholar
  18. 18.
    Booth NA, Simpson AJ, Croll A, Bennett B, MacGregor IR (1988) Plasminogen activator inhibitor (PAI-1) in plasma and platelets. Br J Haematol 70:327–333PubMedCrossRefGoogle Scholar
  19. 19.
    O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328PubMedCrossRefGoogle Scholar
  20. 20.
    Margolis DJ, Kantor J, Santanna J, Strom BL, Berlin JA (2001) Effectiveness of platelet releasate for the treatment of diabetic neuropathic foot ulcers. Diabetes Care 24:483–488PubMedCrossRefGoogle Scholar
  21. 21.
    Pinedo HM, Verheul HM, D’Amato RJ, Folkman J (1998) Involvement of platelets in tumour angiogenesis? Lancet 352:1775–1777PubMedCrossRefGoogle Scholar
  22. 22.
    Costantini V, Zacharski LR, Moritz TE, Edwards RL (1990) The platelet count in carcinoma of the lung and colon. Thromb Haemost 64:501–505PubMedGoogle Scholar
  23. 23.
    Engan T, Hannisdal E (1990) Blood analyses as prognostic factors in primary lung cancer. Acta Oncol 29:151–154PubMedCrossRefGoogle Scholar
  24. 24.
    Hernandez E, Lavine M, Dunton CJ, Gracely E, Parker J (1992) Poor prognosis associated with thrombocytosis in patients with cervical cancer. Cancer 69:2975–2977PubMedCrossRefGoogle Scholar
  25. 25.
    Li AJ, Madden AC, Cass I, Leuchter RS, Lagasse LD, Karlan BY (2004) The prognostic significance of thrombocytosis in epithelial ovarian carcinoma. Gynecol Oncol 92:211–214PubMedCrossRefGoogle Scholar
  26. 26.
    Shimada H, Oohira G, Okazumi S, Matsubara H, Nabeya Y, Hayashi H, Takeda A, Gunji Y, Ochiai T (2004) Thrombocytosis associated with poor prognosis in patients with esophageal carcinoma. J Am Coll Surg 198:737–741PubMedCrossRefGoogle Scholar
  27. 27.
    Silvis SE, Turkbas N, Doscherholmen A (1970) Thrombocytosis in patients with lung cancer. JAMA 211:1852–1853PubMedCrossRefGoogle Scholar
  28. 28.
    Symbas NP, Townsend MF, El-Galley R, Keane TE, Graham SD, Petros JA (2000) Poor prognosis associated with thrombocytosis in patients with renal cell carcinoma. BJU Int 86:203–207PubMedCrossRefGoogle Scholar
  29. 29.
    Taucher S, Salat A, Gnant M, Kwasny W, Mlineritsch B, Menzel RC, Schmid M, Smola MG, Stierer M, Tausch C, Galid A, Steger G, Jakesz R (2003) Impact of pretreatment thrombocytosis on survival in primary breast cancer. Thromb Haemost 89:1098–1106PubMedGoogle Scholar
  30. 30.
    Zeimet AG, Marth C, Muller-Holzner E, Daxenbichler G, Dapunt O (1994) Significance of thrombocytosis in patients with epithelial ovarian cancer. Am J Obstet Gynecol 170:549–554PubMedGoogle Scholar
  31. 31.
    Herndon JE, Green MR, Chahinian AP, Corson JM, Suzuki Y, Vogelzang NJ (1998) Factors predictive of survival among 337 patients with mesothelioma treated between 1984 and 1994 by the Cancer and Leukemia Group B. Chest 113:723–731PubMedCrossRefGoogle Scholar
  32. 32.
    Brockmann MA, Giese A, Mueller K, Kaba FJ, Lohr F, Weiss C, Gottschalk S, Nolte I, Leppert J, Tuettenberg J, Groden C (2007) Preoperative thrombocytosis predicts poor survival in patients with glioblastoma. Neuro Oncol 9:335–342PubMedCrossRefGoogle Scholar
  33. 33.
    Nolte I, Przibylla H, Bostel T, Groden C, Brockmann MA (2008) Tumor-platelet interactions: glioblastoma growth is accompanied by increasing platelet counts. Clin Neurol Neurosurg 110:339–342PubMedCrossRefGoogle Scholar
  34. 34.
    Larrivee B, Karsan A (2005) Isolation and culture of primary endothelial cells. Methods Mol Biol 290:315–329PubMedGoogle Scholar
  35. 35.
    Lamszus K, Schmidt NO, Ergun S, Westphal M (1999) Isolation and culture of human neuromicrovascular endothelial cells for the study of angiogenesis in vitro. J Neurosci Res 55:370–381PubMedCrossRefGoogle Scholar
  36. 36.
    Brockmann MA, Ulbricht U, Gruner K, Fillbrandt R, Westphal M, Lamszus K (2003) Glioblastoma and cerebral microvascular endothelial cell migration in response to tumor-associated growth factors. Neurosurgery 52:1391–1399PubMedCrossRefGoogle Scholar
  37. 37.
    Kunkel P, Ulbricht U, Bohlen P, Brockmann MA, Fillbrandt R, Stavrou D, Westphal M, Lamszus K (2001) Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 61:6624–6628PubMedGoogle Scholar
  38. 38.
    Hudd C, Euhus DM, LaRegina MC, Herbold DR, Palmer DC, Johnson FE (1985) Effect of cholecystokinin on human cholangiocarcinoma xenografted into nude mice. Cancer Res 45:1372–1377PubMedGoogle Scholar
  39. 39.
    Brockmann MA, Ulmer S, Leppert J, Nadrowitz R, Wuestenberg R, Nolte I, Petersen D, Groden C, Giese A, Gottschalk S (2006) Analysis of mouse brain using a clinical 1.5 T scanner and a standard small loop surface coil. Brain Res 1068:138–142PubMedCrossRefGoogle Scholar
  40. 40.
    Kisucka J, Butterfield CE, Duda DG, Eichenberger SC, Saffaripour S, Ware J, Ruggeri ZM, Jain RK, Folkman J, Wagner DD (2006) Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Natl Acad Sci USA 103:855–860PubMedCrossRefGoogle Scholar
  41. 41.
    Rhee JS, Black M, Schubert U, Fischer S, Morgenstern E, Hammes HP, Preissner KT (2004) The functional role of blood platelet components in angiogenesis. Thromb Haemost 92:394–402PubMedGoogle Scholar
  42. 42.
    Murga M, Yao L, Tosato G (2004) Derivation of endothelial cells from CD34− umbilical cord blood. Stem Cells 22:385–395PubMedCrossRefGoogle Scholar
  43. 43.
    Nieswandt B, Bergmeier W, Rackebrandt K, Gessner JE, Zirngibl H (2000) Identification of critical antigen-specific mechanisms in the development of immune thrombocytopenic purpura in mice. Blood 96:2520–2527PubMedGoogle Scholar
  44. 44.
    Bergmeier W, Rackebrandt K, Schroder W, Zirngibl H, Nieswandt B (2000) Structural and functional characterization of the mouse von Willebrand factor receptor GPIb-IX with novel monoclonal antibodies. Blood 95:886–893PubMedGoogle Scholar
  45. 45.
    Manegold PC, Hutter J, Pahernik SA, Messmer K, Dellian M (2003) Platelet-endothelial interaction in tumor angiogenesis and microcirculation. Blood 101:1970–1976PubMedCrossRefGoogle Scholar
  46. 46.
    Hollen CW, Henthorn J, Koziol JA, Burstein SA (1992) Serum interleukin-6 levels in patients with thrombocytosis. Leuk Lymphoma 8:235–241PubMedCrossRefGoogle Scholar
  47. 47.
    Kaser A, Brandacher G, Steurer W, Kaser S, Offner FA, Zoller H, Theurl I, Widder W, Molnar C, Ludwiczek O, Atkins MB, Mier JW, Tilg H (2001) Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis. Blood 98:2720–2725PubMedCrossRefGoogle Scholar
  48. 48.
    Takeuchi E, Ito M, Mori M, Yamaguchi T, Nakagawa M, Yokota S, Nishikawa H, Sakuma-Mochizuki J, Hayashi S, Ogura T (1996) Lung cancer producing interleukin-6. Intern Med 35:212–214PubMedCrossRefGoogle Scholar
  49. 49.
    Tefferi A, Ho TC, Ahmann GJ, Katzmann JA, Greipp PR (1994) Plasma interleukin-6 and C-reactive protein levels in reactive versus clonal thrombocytosis. Am J Med 97:374–378PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Marc A. Brockmann
    • 1
  • Birte Bender
    • 2
  • Elena Plaxina
    • 1
  • Ingo Nolte
    • 1
  • Ralf Erber
    • 3
  • Katrin Lamszus
    • 4
  • Christoph Groden
    • 1
  • Lothar Schilling
    • 5
  1. 1.Department of Neuroradiology, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
  2. 2.Department of OtorhinolaryngologyLeopold-Franzens University of InnsbruckInnsbruckAustria
  3. 3.Department of Orthodontics and Dentofacial Orthopaedics, Dental SchoolUniversity of HeidelbergHeidelbergGermany
  4. 4.Department of NeurosurgeryUniversity Hospital Hamburg-EppendorfHamburgGermany
  5. 5.Division of Neurosurgical Research, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany

Personalised recommendations