Skip to main content

Advertisement

Log in

Analysis of transforming growth factor β receptor expression and signaling in higher grade meningiomas

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

TGF-β receptors (TGF-βRs) inhibit growth of many cell types. Loss of TGF-βRs or its signaling components have been found in several human malignancies. The expression and the role of TGF-βRs in regulating anaplastic meningioma growth has not been studied. Real time PCR found TGF-β RIII expression significantly lower in five grade III compared to eight grade I and eight grade II tumors (P = 0.0481). By western blot analysis, TGF-βRI was detected in the four fetal and adult leptomeninges, all 18 grade I, 14 grade II and six grade III meningiomas. TGF-βRII was detected in none of the leptomeninges, 55% of grade I, 71% of grade II and weak to negative in five of six the grade III meningiomas analyzed. TGF-βRIII immunoreactivity was not detected in the fetal meninges but was detected in 94% of grade I, 70% of grade II and 67% grade III tumors. Phospho-SMAD 3 and Smad 7 were detected in nearly all tumors. TGF-β1 had no effect on PDGF-BB stimulation of DNA synthesis in six of seven WHO grade II and the grade III cells. It produced an increase in phosphorylation of SMAD 3 and p38MAPK in two of four and p44/42MAPK in three of four grade II cells showing no change in DNA synthesis after treatment. Thus, only attenuated TGF-βRIII expression and TGFB growth inhibition may occur in select higher grade meningiomas. Nonetheless, restoring TGF-β inhibition of meningioma cell proliferation may be an important objective in the design of new chemotherapies for these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Piel E, Roberts AB (2001) Suppressor and oncogenic roles of transforming growth factor-B and its signaling pathways in tumorigenesis. Adv Cancer Res 83:1–54

    Article  Google Scholar 

  2. Massague J (2008) TGF-B in cancer. Cell 134:215–230

    Article  PubMed  CAS  Google Scholar 

  3. Levy L, Hill CS (2006) Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 17:41–58

    Article  PubMed  CAS  Google Scholar 

  4. Millet C, Zhang YE (2007) Roles of Smad3 in TGF-B signaling during carcinogenesis. Crit Rev Eukaryot Gene Expr 17:281–293

    PubMed  CAS  Google Scholar 

  5. Miyazono K, Kusanagi K, Inoue H (2001) Divergence and convergence of TGF-βBMP signaling. J Cell Phys 187:265–276

    Article  CAS  Google Scholar 

  6. Massaque L (1992) Receptors for the TGF-β family. Cell 69:1067–1070

    Article  Google Scholar 

  7. Johnson MD, Federspiel CF, Gold LI, Moses HL (1992) Transforming growth factor-β and transforming growth factor-β receptor expression in human meningioma cells. Am J Pathol 141:631–642

    Google Scholar 

  8. Johnson MD, Gold LI, Moses HL (1992) Evidence for TGF-β expression in human leptomeningeal cells and TGF-β-like activity in human cerebrospinal fluid. Lab Invest 67:360–368

    PubMed  CAS  Google Scholar 

  9. Johnson MD, Okediji E, Woodard A (2004) Transforming growth factor-β effects on meningioma cell proliferation and signal transduction pathways. J Neurooncol 66:9–16

    Article  PubMed  Google Scholar 

  10. Redzic ZB, Preston JE, Duncan JA et al (2005) The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol 71:1–52

    Article  PubMed  CAS  Google Scholar 

  11. Vawter MP, Dillon-Carter O, Tourtellote WW, Carvey P, Freed WJ (1996) TGF-beta 1 and TGFbeta 2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid. Exp Neurol 142:313–322

    Article  PubMed  CAS  Google Scholar 

  12. Zhang Y, Feng X-H, Wu RY, Derynk R (1996) Receptor associated Mad homologues synergize as effectors of the TGF-β response. Nature 383:168–172

    Article  PubMed  CAS  Google Scholar 

  13. Zhang Y, Derynk R (1999) Regulation of Smad signaling by protein associations and signaling crosstalk. Trend Cell Biol 9:274–279

    Article  CAS  Google Scholar 

  14. Mulder KM (2000) Role of Ras and Mapks in TGFB signalling. Cytokines Growth Factor Rev 11:23–35

    Article  CAS  Google Scholar 

  15. Javelaud D, Mauviel A (2005) Cross talk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis. Oncogene 24:5742–5750

    Article  PubMed  CAS  Google Scholar 

  16. Yan Z, Winawer S, Friedman E (1994) Two different signal transduction pathways can be activated by transforming growth factor β1 in epithelial cells. J Biol Chem 269:13231–13237

    PubMed  CAS  Google Scholar 

  17. Mucsi I, Skorecki KL, Goldberg HJ (1996) Extracellular signal-regulated kinase and the small GTP-binding protein, Rac, contribute to the effects of transforming growth factor-β1 on gene expression. J Biol Chem 271:16567–16572

    Article  PubMed  CAS  Google Scholar 

  18. Frey RS, Mulder KM (1997) Involvement of extracellular signal-regulated kinase 2 and stress-activated protein kinase/Jun N-terminal kinase activation by transforming growth factor β in negative growth control of breast cancer cells. Cancer Res 57:628–633

    PubMed  CAS  Google Scholar 

  19. Lewis TS, Shapiro PS, Ahn NG (1998) Signal transduction through MAP Kinase cascades. Adv Cancer Res 74:49–139

    Article  PubMed  CAS  Google Scholar 

  20. Kawabata M, Imanura T, Miyazono K, Engel ME, Moses HL (1995) Interaction of the transforming growth factor-β type 1 receptor with farnesyl-protein transferase-a. J Biol Chem 270:29628–29631

    Article  PubMed  CAS  Google Scholar 

  21. Higaki M, Shimokado K (1999) PI3K. Arterioscler Thromb Vasc Biol 19:2127–2132

    PubMed  CAS  Google Scholar 

  22. Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275:36803–36810

    Article  PubMed  CAS  Google Scholar 

  23. Ravanti L, Hakkinen L, Larjava H, Saarialho-Kere U, Foschi M, Han J, Kahari VM (1999) Induction of collagenase-3 (MMP-13) expression in human skip fibroblasts by three-dimensional collagen is mediated by p38 mitogen-activated protein kinase. J Biol Chem 274:37292–37300

    Article  PubMed  CAS  Google Scholar 

  24. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Cell Signal 14:381–395

    Article  Google Scholar 

  25. Johnson MD, O’Connell M, Vito F, Bakos RS (2009) Increased STAT-3 and synchronous activation of Raf-1-MEK-1-MAPK, and Phosphatidylinositol 3-Kinase-Akt-mTOR pathways in atypical and anaplastic meningiomas. J Neuro-Oncol 92:129–135

    Article  CAS  Google Scholar 

  26. Johnson MD, O’Connell MJ, Pilcher W, Jay Reeder J (2010) Fibroblast growth factor receptor-3 expression in meningiomas and promotion of proliferation by activation of the PI3K-Akt pathway. J Neurosurg 112:934–939

    Article  PubMed  CAS  Google Scholar 

  27. Perry A, Louis DN, Scheithauer BW et al (2007) Meningiomas. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) Tumours of the nervous system. WHO Press, Geneva, pp 164–172

    Google Scholar 

  28. Matrisian LM, Hogan BL (1990) Growth factor-regulated proteases and extracellular matrix remodeling during mammalian development. Curr Top Dev Biol 24:219–259

    Article  PubMed  CAS  Google Scholar 

  29. Fausto N (1991) Growth factors in liver development, regeneration and carcinogenesis. Prog Growth Factor Res 3:219–234

    Article  PubMed  CAS  Google Scholar 

  30. Johnson MD, Vito F, O’Connell MJ, Pilcher W (2009) Bone morphogenetic protein-4 and receptors are expressed in the leptomeninges and meningiomas and signal via MAPK. J Neuropathol Exp Neurol 68:1177–1183

    Article  PubMed  CAS  Google Scholar 

  31. Knobloch TJ, Lynch MA, Song H et al (2001) Analysis of TGF-β type I receptor for mutations in polymorphisms in head and neck cancers. Mutation Res 479:131–139

    PubMed  CAS  Google Scholar 

  32. Chen T, Triplett J, Dehner B et al (1998) Transforming growth factor beta type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res 58:4805–4810

    PubMed  CAS  Google Scholar 

  33. Chen T, Carter D, Garrigue-Antar L et al (2001) Transforming growth factor β type I receptor gene is frequently mutated in ovarian carcinomas. Cancer Res 61:4679–4682

    PubMed  CAS  Google Scholar 

  34. Jin G, Deng Y, Miao R et al (2008) TGFB1 and TGFBR2 functional polymorphisms and risk of esophageal squamous cell carcinoma: a case-control analysis in the Chinese population. J Cancer Res Clin Oncol 134:345–351

    Article  PubMed  CAS  Google Scholar 

  35. Kretzschmar M (2000) Transforming growth factor-β and breast cancer: transforming growth factor-β/SMAD signaling defects and cancer. Breast Cancer Res 2:107–115

    Article  PubMed  CAS  Google Scholar 

  36. Ohue M, Tomita N, Mondeb et al (1996) Mutations of the transforming growth factor receptor type II receptor gene and microsatellite instability in gastric cancer. Int J Cancer 68:203–206

    Article  PubMed  CAS  Google Scholar 

  37. Wang JC, Su CC, Xu JB et al (2007) Novel microdeletion in the transforming growth factor β type II receptor gene is associated with giant and large cell variants of nonsmall cell lung carcinoma. Gene Chromosome Cancer 26:192–201

    Article  Google Scholar 

  38. Xanfei Xu, Pasche B (2007) TGF-B signaling alterations and susceptibility to colorectal cancer. Hum Mol Genet 16:R14–R20

    Article  Google Scholar 

  39. Howe JR, Roth S, Ringold JC et al (1998) Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280:1086–1088

    Article  PubMed  CAS  Google Scholar 

  40. Iolascon L, Giodani A, Borrielo R et al (2000) Reduced expression of transforming growth factor-beta receptor type III in high stage neuroblastomas. Br J Cancer 82:1171–1176

    Article  PubMed  CAS  Google Scholar 

  41. Hempel N, How T, Dong SK et al (2007) Loss of betaglycan expression in ovarian cancer: role in motility and invasion. Cancer 67:5231–5238

    CAS  Google Scholar 

  42. Bilandzic S, Chu PG, Farnworth C et al (2009) Loss of betaglycan contributes to the malignant properties of human granulosa tumor cells. Mol Endocrinol 23:539–548

    Article  PubMed  CAS  Google Scholar 

  43. Florio P, Ciarmela FM, Reis P et al (2005) Inhibin alpha subunit and the inhibin co-receptor betaglycan are downregulated in endometrial carcinoma. Eur J Endocrinol 152:277–284

    Article  PubMed  CAS  Google Scholar 

  44. Sharfi N, Hurt EM, Kawasaki BT et al (2007) TGFBR3 loss and consequences in prostate cancer. Prostate 67:301–311

    Article  Google Scholar 

  45. Turley RS, Finger EC, Hempel N et al (2007) The type III transforming growth factor-beta receptor as a novel tumor suppressor gene in prostate cancer. Cancer Res 67:1090–1098

    Article  PubMed  CAS  Google Scholar 

  46. Copland JA, Luxon A, Ajani T et al (2003) Genomic profiling identifies alterations in TGF beta signaling through loss of TGFbeta receptor expression in human renal cell carcinogenesis and progression. Oncogene 22:8053–8062

    Article  PubMed  Google Scholar 

  47. Finger EC, Turley RS, Dong M et al (2008) TGF-beta RIII suppresses non-small cell lung cancer invasiveness and tumorigenicity. Carcinogenesis 29:528–535

    Article  PubMed  CAS  Google Scholar 

  48. Dong M, How T, Kirkbride KC et al (2007) The type III TGF-beta receptor suppresses breast cancer progression. J Clin Invest 117:206–217

    Article  PubMed  CAS  Google Scholar 

  49. Carvalho LH, Smirnov I, Baia GS et al (2007) Molecular signatures define two main classes of meningiomas. Mol Cancer 6:64–78

    Article  PubMed  Google Scholar 

  50. Rojas A, Padidam M, Cress D, Grady W (2009) TGF-β receptor levels regulate the specificty of siganling pathway activation and biological effects of TGF-β. Biochim Biophys Acta 1793:1165–1193

    Article  PubMed  CAS  Google Scholar 

  51. Nakano A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin HE, Heldin CH, ten Dijke P (1997) Identification of Smad 7 a TGF-β inducible antagonist of TGF-β signaling. Nature 389:631–635

    Article  Google Scholar 

  52. Cerutti JM, Ebina KN, Se Matsuo et al (2003) Expression of Smad4 and Smad7 in human thyroid follicular carcinoma cell lines. J Endocrinol 26:516–521

    CAS  Google Scholar 

  53. Dowdy SC, Mariani A, Reinholz MM et al (2005) Overexpression of the TGF-beta antagonist Smad 7 in endometrial cancer. Gynecol Oncol 96:368–373

    Article  PubMed  CAS  Google Scholar 

  54. Perry A, Gutman DH, Reifenberger G (2004) Molecular pathogenesis of meningiomas. J Neuro-Oncol 70:183–202

    Article  Google Scholar 

  55. Riemenschneider MJ, Perry A, Reifenberger G (2006) Histological classification and molecular genetics of meningiomas. Lancet Neurol 5:1045–1054

    Article  PubMed  CAS  Google Scholar 

  56. Johnson MD, Toms S (2005) Mitogenic signal transduction pathways in meningiomas: novel targets for meningioma chemotherapy? J Neuropathol Exp Neurol 64:1029–1036

    Article  PubMed  CAS  Google Scholar 

  57. Jennings MT, Maciunas RJ, Carver R, Bascom CC, Juneau P, Misulis K, Moses HL (1991) TGF-β 1 and TGF-β 2 are potential growth regulators for low grade and malignant gliomas in vitro:evidence in support of an autocrine hypothesis. Int J Cancer 49:129–139

    Article  PubMed  CAS  Google Scholar 

  58. Fan DS, Chakrabarty C, Seid CW, Bell H, Schackert K, Morikawa K, Fidler IJ (1989) Clonal stimulation or inhibition of human colon carcinomas and human renal carcinomas mediated by transforming growth factor-beta 1. Cancer Commun 1:117–125

    PubMed  CAS  Google Scholar 

  59. Manning AM, Williams AC, Game SM, Paraskeva C (1991) Differential sensitivity of human colonic adenoma and carcinoma cells to transforming growth factor beta (TGF-beta): conversion of an adenoma cell line to a tumorigenic phenotype is accompanied by a reduced response to the inhibitory effects of TGF-beta. Oncogene 6:1471–1476

    PubMed  CAS  Google Scholar 

  60. Matsushita M, Matsuraki K, Date M et al (1999) Down-regulation of TGF-β receptors in human colorectal cancer: implications for cancer development. Br J Cancer 80:194–205

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahlon D. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, M.D., Shaw, A.K., O’Connell, M.J. et al. Analysis of transforming growth factor β receptor expression and signaling in higher grade meningiomas. J Neurooncol 103, 277–285 (2011). https://doi.org/10.1007/s11060-010-0399-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-010-0399-y

Keywords

Navigation