Skip to main content

Advertisement

Log in

Temporal lobe pleomorphic xanthoastrocytoma and acquired BRAF mutation in an adolescent with the constitutional 22q11.2 deletion syndrome

  • Case Report
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

DiGeorge syndrome, or velocardiofacial syndrome (DGS/VCFS), is a rare and usually sporadic congenital genetic disorder resulting from a constitutional microdeletion at chromosome 22q11.2. While rare cases of malignancy have been described, likely due to underlying immunodeficiency, central nervous system tumors have not yet been reported. We describe an adolescent boy with DGS/VCFS who developed a temporal lobe pleomorphic xanthoastrocytoma. High-resolution single nucleotide polymorphism array studies of the tumor confirmed a constitutional 22q11.21 deletion, and revealed acquired gains, losses and copy number neutral loss of heterozygosity of several chromosomal regions, including a homozygous deletion of the CDKN2A/B locus. The tumor also demonstrated a common V600E mutation in the BRAF oncogene. This is the first reported case of a patient with DiGeorge syndrome developing a CNS tumor of any histology and expands our knowledge about low-grade CNS tumor molecular genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

BRAF:

B-Raf proto-oncogene serine/threonine-protein kinase

CNS:

Central nervous system

MRI:

Magnetic resonance image

PXA:

Pleomorphic xanthoastrocytoma

SNP:

Single nucleotide polymorphism

WHO:

World Health Organization

DGS/VCFS:

DiGeorge syndrome/velocardiofacial syndrome

References

  1. DiGeorge AM (1968) Congenital absence of the thymus and its immunologic consequences: concurrence with congenital hypoparathyroidism. IV(1). White Plains, NY: March of Dimes-Birth Defects Foundation:116-121

  2. Emanuel BS, McDonald-McGinn D, Saitta SC, Zackai EH (2001) The 22q11.2 deletion syndrome. Adv Pediatr 48:39–73

    PubMed  CAS  Google Scholar 

  3. Shaikh TH, Kurahashi H, Saitta SC, O’Hare AM, Hu P, Roe BA, Driscoll DA, McDonald-McGinn DM, Zackai EH, Budarf ML, Emanuel BS (2000) Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet 9:489–501

    Article  PubMed  CAS  Google Scholar 

  4. Oskarsdottir S, Vujic M, Fasth A (2004) Incidence and prevalence of the 22q11 deletion syndrome: a population-based study in Western Sweden. Arch Dis Child 89(2):148–151

    Article  PubMed  CAS  Google Scholar 

  5. McDonald-McGinn DM, Reilly A, Wallgren-Pettersson C, Hoyme HE, Yang SP, Adam MP, Zackie EH, Sullivan KE (2006) Malignancy in chromosome 22q11.2 deletion syndrome (Digeorge syndrome/velocardiofacial syndrome). Am J Med Genet 140A:906–909

    Article  Google Scholar 

  6. Jalali GR, Vorstman JA, Errami A, Vijzelaar R, Biegel J, Shaikh T, Emanuel BS (2008) Detailed analysis of 22q11.2 with a high density MLPA probe set. Hum Mutat 29(3):433–440

    Article  PubMed  CAS  Google Scholar 

  7. Jackson EM, Shaikh TH, Gururangan S, Jones MC, Malkin D, Nikkel SM, Zuppan CW, Wainwright LM, Zhang F, Biegel JA (2007) High-density single nucleotide polymorphism array analysis in patients with germline deletions of 22q11.2 and malignant rhabdoid tumor. Hum Genet 122:117–127

    Article  PubMed  CAS  Google Scholar 

  8. Scattone A, Caruso G, Marzullo A, Piscitelli D et al (2003) Neoplastic disease and deletion 22q11.2: a multicentric study and report of two cases. Pediatr Pathol Mol Med 22:323–341

    Article  PubMed  CAS  Google Scholar 

  9. Jackson EM, Sievert AJ, Gai X, Hakonarson H, Judkins AR, Tooke L, Perin JC, Xie H, Shaikh TH, Biegel JA (2009) Genomic analysis using high-density single nucleotide polymorphism-based oligonucleotide arrays and multiplex ligation-dependent probe amplification provides a comprehensive analysis of INI1/SMARCB1 in malignant rhabdoid tumors. Clin Cancer Res 15(6):1923–1930

    Article  PubMed  CAS  Google Scholar 

  10. Dougherty MJ, Santi M, Brose MS, Ma C, Resnick AC, Sievert AJ, Storm PB, Biegel JA (2010) Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. Neuro Oncol doi: 10.1093/neuonc/noq007

  11. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) (2007) W.H.O. Classification of tumors of the central nervous system. IARC, Lyon

    Google Scholar 

  12. Kepes JJ, Rubinstein LJ, Ansbacher L, Schreiber DJ (1989) Histopathological features of recurrent pleomorphic xanthoastrocytomas: Further corroboration of the glial nature of the neoplasm: A study of 3 cases. Acta Neuropathol 78:585–593

    Article  PubMed  CAS  Google Scholar 

  13. Fouladi M, Jenkins J, Burger P, Langston J, Merchant T, Heideman R, Thompson S, Sanford A, Kun L, Gajjar A (2001) Pleomorphic xanthoastrocytoma: favorable outcome after complete surgical resection. Neuro-Oncol 3:184–192

    PubMed  CAS  Google Scholar 

  14. Weber RG, Hoischen A, Ehrler M, Zipper P, Kaulich K, Blaschke B, Becker AJ, Weber-Mangal S, Jauch A, Radlwimmer B, Schramm J, Wiestler OD, Lichter P, Reifenberger G (2007) Frequent loss of chromosome 9, homozygous CDKN2A/p14 ARF /CDKN2B deletion and low TSC1 mRNA expression in pleomorphic xanthoastrocytomas. Oncogene 26:1088–1097

    Article  PubMed  CAS  Google Scholar 

  15. Davies H, Bignelli GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  PubMed  CAS  Google Scholar 

  16. Michaloglou C, Vredeveld LCW, Mooi WJ, Peeper DS (2008) BRAF E600 in benign and malignant human tumors. Oncogene 27:877–895

    Article  PubMed  CAS  Google Scholar 

  17. Sievert AJ, Jackson EM, Gai X et al (2009) Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol 19(3):449–458

    Article  PubMed  CAS  Google Scholar 

  18. Jones DTW, Kocialkowski S, Liu L et al (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68:8673–8677

    Article  PubMed  CAS  Google Scholar 

  19. Forshew T, Tatvossian RG, Lawson ARJ et al (2009) Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol 218(2):172–181

    Article  PubMed  CAS  Google Scholar 

  20. Sawyer JR, Roloson GJ, Chadduck WM, Boop FA (1991) Cytogenetic findings in a pleomorphic xanthoastrocytoma. Cancer Genet Cytogenet 55:225–230

    Article  PubMed  CAS  Google Scholar 

  21. Yin X, Hui AB, Lion EC, Ding M, Chang AR, Ng H (2002) Genetic imbalances in pleomorphic xanthoastrocytoma detected by comparative genomic hybridization and literature review. Cancer Genet Cytogenet 132:14–19

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by grants from the National Institutes of Health, CA 133173 and CA 46274 (JAB) and the N.B. Carter Neuro-Oncology Endowment Fund at Cook Children’s Medical Center, Fort Worth, TX (JCM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Murray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, J.C., Donahue, D.J., Malik, S.I. et al. Temporal lobe pleomorphic xanthoastrocytoma and acquired BRAF mutation in an adolescent with the constitutional 22q11.2 deletion syndrome. J Neurooncol 102, 509–514 (2011). https://doi.org/10.1007/s11060-010-0350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-010-0350-2

Keywords

Navigation