Skip to main content

Advertisement

Log in

Quantification of dispersion of Gd-DTPA from the initial area of enhancement into the peritumoral zone of edema in brain tumors

  • Clinical Study - Patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

To evaluate Gd-DTPA contrast enhancement of brain tumors over time and to describe the dispersion of contrast into the zone of peritumoral edema. We performed MR imaging with a dose of 0.4 mmol Gd-DTPA/kg on eleven patients diagnosed with 5 different supratentorial tumors. MR imaging was done at five intervals between 5 min and 6 h. The change in zone of enhancement was measured for each time point, and a linear measurement was made of the furthest dispersion of contrast from the original volume of enhancement. An increase in the zone of enhancement over time was seen for all tumors; the average increase in volume of contrast was 14.76 ± 3.35 cm3 (mean ± standard deviation). The largest changes in the zone of contrast enhancement, 18.6 ± 4.63 cm3, were seen in glioblastoma multiforme. The expansion of contrast enhancement assumed the morphology of the surrounding edema. The dispersion of Gd-DTPA over time into the zone of peritumoral edema is a potential source of error in clinical settings when there is a delay between Gd-DTPA injection and scanning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Felix R, Schörner W, Laniado M et al (1985) Brain tumors: MR imaging with gadolinium-DTPA. Radiology 156:681–688

    PubMed  CAS  Google Scholar 

  2. Carr DH, Brown J, Bydder GM et al (1984) Intravenous chelated gadolinium as a contrast agent in NMR imaging of cerebral tumours. Lancet 1:484–486. doi:10.1016/S0140-6736(84)92852-6

    Article  PubMed  CAS  Google Scholar 

  3. Graif M, Bydder GM, Steiner RE et al (1985) Contrast-enhanced MR imaging of malignant brain tumors. AJNR Am J Neuroradiol 6:855–862

    PubMed  CAS  Google Scholar 

  4. Claussen C, Laniado M, Kazner E et al (1985) Application of contrast agents in CT and MRI (NMR): their potential in imaging of brain tumors. Neuroradiology 27:164–171. doi:10.1007/BF00343790

    Article  PubMed  CAS  Google Scholar 

  5. Brant-Zawadzki M, Berry I, Osaki L et al (1986) Gd-DTPA in clinical MR of the brain: 1. Intraaxial lesions. AJR Am J Roentgenol 147:1223–1230

    PubMed  CAS  Google Scholar 

  6. Carollo BR, Runge VM, Price AC et al (1990) The prospective evaluation of gd-DTPA in 225 consecutive cranial cases: adverse reactions and diagnostic value. Magn Reson Imaging 8:381–393. doi:10.1016/0730-725X(90)90046-5

    Article  PubMed  CAS  Google Scholar 

  7. Knauth M, Wirtz CR, Tronnier VM et al (1999) Intraoperative MR imaging increases the extent of tumor resection in patients with high-grade gliomas. AJNR Am J Neuroradiol 20:1642–1646

    PubMed  CAS  Google Scholar 

  8. Schellinger PD, Meinck HM, Thron A (1999) Diagnostic accuracy of MRI compared to CCT in patients with brain metastases. J Neurooncol 44:275–281. doi:10.1023/A:1006308808769

    Article  PubMed  CAS  Google Scholar 

  9. Shih JL, Brugger RM (1992) Gadolinium as a neutron capture therapy agent. Med Phys 19:733–744. doi:10.1118/1.596817

    Article  PubMed  CAS  Google Scholar 

  10. Ito U, Reulen HJ, Tomita H et al (1990) A computed tomography study on formation, propagation, and resolution of edema fluid in metastatic brain tumors. Adv Neurol 52:459–468

    PubMed  CAS  Google Scholar 

  11. Terada T, Nakamura Y, Tsuura M et al (1992) MRI changes in embolized meningiomas. Neuroradiology 34:162–167. doi:10.1007/BF00588165

    Article  PubMed  CAS  Google Scholar 

  12. Groothuis DR, Lapin GD, Vriesendorp FJ et al (1991) A method to quantitatively measure transcapillary transport of iodinated compounds in canine brain tumors with computed tomography. J Cereb Blood Flow Metab 11:939–948

    PubMed  CAS  Google Scholar 

  13. Yeung W, Lee TY, Del Maestro RF, Kozak R, Brown T (1992) In vivo CT measurement of blood-brain transfer constant of iopamidol in human brain tumors. J Neurooncol 14:177–187

    PubMed  CAS  Google Scholar 

  14. Ito U, Tomita H, Tone O, Masaoka H, Tominaga B (1994) Peritumoral edema in meningioma: a contrast enhanced CT study. Acta Neurochir Suppl (Wien) 60:361–364

    CAS  Google Scholar 

  15. Aaslid R, Gröger U, Patlak CS et al (1990) Fluid flow rates in human peritumoural oedema. Acta Neurochir Suppl (Wien) 51:152–154

    CAS  Google Scholar 

  16. Nagashima T, Tamaki N, Takada M et al (1994) Formation and resolution of brain edema associated with brain tumors. A comprehensive theoretical model and clinical analysis. Acta Neurochir Suppl (Wien) 60:165–167

    CAS  Google Scholar 

  17. Ohata K, Marmarou A (1992) Clearance of brain edema and macromolecules through the cortical extracellular space. J Neurosurg 77:387–396

    Article  PubMed  CAS  Google Scholar 

  18. Bitzer M, Nägele T, Geist-Barth B et al (2000) Role of hydrodynamic processes in the pathogenesis of peritumoral brain edema in meningiomas. J Neurosurg 93:594–604

    Article  PubMed  CAS  Google Scholar 

  19. Wrba E, Nehring V, Chang RC, Baethmann A, Reulen HJ, Uhl E (1997) Quantitative analysis of brain edema resolution into the cerebral ventricles and subarachnoid space. Acta Neurochir Suppl (Wien) 70:288–290

    CAS  Google Scholar 

  20. Runge VM (1988) Gd-DTPA: an i.v. contrast agent for clinical MRI. Int J Radiat Appl Instrum B 15:37–44. doi:10.1016/0883-2897(88)90158-4

    CAS  Google Scholar 

  21. Yuh WT, Tali ET, Nguyen HD et al (1995) The effect of contrast dose, imaging time, and lesion size in the MR detection of intracerebral metastasis. AJNR Am J Neuroradiol 16:373–380

    PubMed  CAS  Google Scholar 

  22. Healy ME, Hesselink JR, Press GA et al (1987) Increased detection of intracranial metastases with intravenous gd-DTPA. Radiology 165:619–624

    PubMed  CAS  Google Scholar 

  23. Russell EJ, Geremia GK, Johnson CE et al (1987) Multiple cerebral metastases: detectability with gd-DTPA-enhanced MR imaging. Radiology 165:609–617

    PubMed  CAS  Google Scholar 

  24. Haustein J, Laniado M, Niendorf HP et al (1992) Administration of gadopentetate dimeglumine in MR imaging of intracranial tumors: dosage and field strength. AJNR Am J Neuroradiol 13:1199–1206

    PubMed  CAS  Google Scholar 

  25. Sze G, Milano E, Johnson C, Heier L (1990) Detection of brain metastases: comparison of contrast-enhanced MR with unenhanced MR and enhanced CT. AJNR Am J Neuroradiol 11:785–791

    PubMed  CAS  Google Scholar 

  26. Pronin IN, Holodny AI, Petraikin AV (1997) MRI of high-grade glial tumors: correlation between the degree of contrast enhancement and the volume of surrounding edema. Neuroradiology 39:348–350. doi:10.1007/s002340050421

    Article  PubMed  CAS  Google Scholar 

  27. Tofts PS (1997) Modeling tracer kinetics in dynamic gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101. doi:10.1002/jmri.1880070113

    Article  PubMed  CAS  Google Scholar 

  28. Choyke PL, Dwyer AJ, Knopp MV (2003) Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 17:509–520. doi:10.1002/jmri.10304

    Article  PubMed  Google Scholar 

  29. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367. doi:10.1002/mrm.1910170208

    Article  PubMed  CAS  Google Scholar 

  30. Ott RJ, Brada M, Flower MA et al (1991) Measurements of blood-brain barrier permeability in patients undergoing radiotherapy and chemotherapy for primary cerebral lymphoma. Eur J Cancer 27:1356–1361

    Article  PubMed  CAS  Google Scholar 

  31. Reulen HJ, Tsuyumu M, Tack A et al (1978) Clearance of edema fluid into cerebrospinal fluid. A mechanism for resolution of vasogenic brain edema. J Neurosurg 48:754–764

    Article  PubMed  CAS  Google Scholar 

  32. Shulman K, Marmarou A, Weitz SN (1975) Gradients of brain interstitial fluid pressure in experimental brain infusion and compression. In: Lundberg N, Ponten U, Brock M (eds) Intracranial pressure II. Springer, Berlin, pp 221–223

    Google Scholar 

  33. Tsuyumu M, Reulen HJ, Prioleau G (1981) Dynamics of formation and resolution of vasogenic brain oedema. I. Measurement of oedema clearance into ventricular CSF. Acta Neurochir (Wien) 57:1–13. doi:10.1007/BF01665107

    Article  CAS  Google Scholar 

  34. Nagashima T, Tada Y, Hamano S et al (1990) The finite element analysis of brain oedema associated with intracranial meningiomas. Acta Neurochir Suppl (Wien) 51:155–157

    CAS  Google Scholar 

  35. Hofmann B, Fischer CO, Lawaczeck R et al (1999) Gadolinium neutron capture therapy (GdNCT) of melanoma cells and solid tumors with the magnetic resonance imaging contrast agent gadobutrol. Investig Radiol 34:126–133. doi:10.1097/00004424-199902000-00005

    Article  CAS  Google Scholar 

  36. Miyatake S, Tamura Y, Kawabata S et al (2007) Boron neutron capture therapy for malignant tumors related to meningiomas. Neurosurgery 61:82–90. doi:10.1227/01.neu.0000279727.90650.24

    Article  PubMed  Google Scholar 

  37. De Stasio G, Rajesh D, Casalbore P et al (2005) Are gadolinium contrast agents suitable for gadolinium neutron capture therapy? Neurol Res 27:387–398. doi:10.1179/016164105X17206

    Article  PubMed  Google Scholar 

  38. De Stasio G, Casalbore P, Pallini R et al (2001) Gadolinium in human glioblastoma cells for gadolinium neutron capture therapy. Cancer Res 61:4272–4277

    PubMed  Google Scholar 

  39. Haustein J, Laniado M, Niendorf HP et al (1993) Triple-dose versus standard-dose gadopentetate dimeglumine: a randomized study in 199 patients. Radiology 186:855–860

    PubMed  CAS  Google Scholar 

  40. Erickson BJ, Campeau NG, Schreiner SA et al (2002) Triple-dose contrast/magnetization transfer suppressed imaging of ‘non-enhancing’ brain gliomas. J Neurooncol 60:25–29. doi:10.1023/A:1020274110502

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Memorial Sloan-Kettering Summer Student Fellowship Program from the National Institutes of Health/National Cancer Institute for the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei I. Holodny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pronin, I.N., McManus, K.A., Holodny, A.I. et al. Quantification of dispersion of Gd-DTPA from the initial area of enhancement into the peritumoral zone of edema in brain tumors. J Neurooncol 94, 399–408 (2009). https://doi.org/10.1007/s11060-009-9872-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-9872-x

Keywords

Navigation