Skip to main content

Advertisement

Log in

Construction of a ganciclovir-sensitive lentiviral vector to assess the influence of angiopoietin-3 and soluble Tie2 on glioma growth

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Malignant brain tumors grow by coopting the existing vasculature, a process involving the release of angiopoietin-2 (Angpt2) from endothelial cells and its binding to the Tie2 receptor. The first goal of this study was to examine the therapeutic potential of two proteins that could interfere with Angpt2, namely Angpt3 and the soluble extracellular domain of Tie2 (sTie2). The second goal was to develop a lentiviral vector capable of delivering such proteins while offering the possibility to identify and destroy the genetically modified cells. To this end, we designed a bicistronic construct expressing the marker enhanced green fluorescent protein fused to the suicide gene herpes simplex virus 1 thymidine kinase. GL261 glioma cells transduced with this vector could be tracked and killed on command by the administration of the prodrug ganciclovir, either in vitro or after implantation into mouse brains. High levels of Angpt3 or sTie2 could be achieved with this vector; however, Angpt3 increased capillary destabilization and glioma growth, whereas sTie2 exerted no effect. Overall, this study helps to understand the importance of the Tie2 signaling pathway in glioma development and the role of Angpt3, but suggests that neither this molecule nor sTie2 are effective agents against malignant gliomas. This study also provides a lentiviral vector design for safer gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Louis DN (2006) Molecular pathology of malignant gliomas. Annu Rev Pathol 1:97–117

    Article  CAS  PubMed  Google Scholar 

  2. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    Article  CAS  PubMed  Google Scholar 

  3. Fischer I, Gagner JP, Law M, Newcomb EW, Zagzag D (2005) Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 15:297–310

    Article  CAS  PubMed  Google Scholar 

  4. Dome B, Hendrix MJ, Paku S, Tovari J, Timar J (2007) Alternative vascularization mechanisms in cancer: pathology and therapeutic implications. Am J Pathol 170:1–15

    Article  CAS  PubMed  Google Scholar 

  5. Reiss Y, Machein MR, Plate KH (2005) The role of angiopoietins during angiogenesis in gliomas. Brain Pathol 15:311–317

    CAS  PubMed  Google Scholar 

  6. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Article  CAS  PubMed  Google Scholar 

  7. Nourhaghighi N, Teichert-Kuliszewska K, Davis J, Stewart DJ, Nag S (2003) Altered expression of angiopoietins during blood-brain barrier breakdown and angiogenesis. Lab Invest 83:1211–1222

    Article  CAS  PubMed  Google Scholar 

  8. Stratmann A, Risau W, Plate KH (1998) Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153:1459–1466

    CAS  PubMed  Google Scholar 

  9. Tait CR, Jones PF (2004) Angiopoietins in tumours: the angiogenic switch. J Pathol 204:1–10

    Article  CAS  PubMed  Google Scholar 

  10. Villeneuve J, Galarneau H, Beaudet MJ, Tremblay P, Chernomoretz A, Vallieres L (2008) Reduced glioma growth following dexamethasone or anti-angiopoietin 2 treatment. Brain Pathol 18:401–414

    Article  CAS  PubMed  Google Scholar 

  11. Valenzuela DM, Griffiths JA, Rojas J, Aldrich TH, Jones PF, Zhou H, McClain J, Copeland NG, Gilbert DJ, Jenkins NA, Huang T, Papadopoulos N, Maisonpierre PC, Davis S, Yancopoulos GD (1999) Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci USA 96:1904–1909

    Article  CAS  PubMed  Google Scholar 

  12. Lin P, Buxton JA, Acheson A, Radziejewski C, Maisonpierre PC, Yancopoulos GD, Channon KM, Hale LP, Dewhirst MW, George SE, Peters KG (1998) Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc Natl Acad Sci USA 95:8829–8834

    Article  CAS  PubMed  Google Scholar 

  13. Lin P, Polverini P, Dewhirst M, Shan S, Rao PS, Peters K (1997) Inhibition of tumor angiogenesis using a soluble receptor establishes a role for Tie2 in pathologic vascular growth. J Clin Invest 100:2072–2078

    Article  CAS  PubMed  Google Scholar 

  14. Raikwar SP, Temm CJ, Raikwar NS, Kao C, Molitoris BA, Gardner TA (2005) Adenoviral vectors expressing human endostatin-angiostatin and soluble Tie2: enhanced suppression of tumor growth and antiangiogenic effects in a prostate tumor model. Mol Ther 12:1091–1100

    Article  CAS  PubMed  Google Scholar 

  15. Xu Y, Liu YJ, Yu Q (2004) Angiopoietin-3 inhibits pulmonary metastasis by inhibiting tumor angiogenesis. Cancer Res 64:6119–6126

    Article  CAS  PubMed  Google Scholar 

  16. Lee HJ, Cho CH, Hwang SJ, Choi HH, Kim KT, Ahn SY, Kim JH, Oh JL, Lee GM, Koh GY (2004) Biological characterization of angiopoietin-3 and angiopoietin-4. Faseb J 18:1200–1208

    Article  CAS  PubMed  Google Scholar 

  17. Sinn PL, Sauter SL, McCray PBJ (2005) Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors—design, biosafety, and production. Gene Ther 12:1089–1098

    Article  CAS  PubMed  Google Scholar 

  18. Fillat C, Carrio M, Cascante A, Sangro B (2003) Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase gene/Ganciclovir system: fifteen years of application. Curr Gene Ther 3:13–26

    Article  CAS  PubMed  Google Scholar 

  19. Kokoris MS, Sabo P, Adman ET, Black ME (1999) Enhancement of tumor ablation by a selected HSV-1 thymidine kinase mutant. Gene Ther 6:1415–1426

    Article  CAS  PubMed  Google Scholar 

  20. Watson DJ, Kobinger GP, Passini MA, Wilson JM, Wolfe JH (2002) Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol Ther 5:528–537

    Article  CAS  PubMed  Google Scholar 

  21. Ausman JI, Shapiro WR, Rall DP (1970) Studies on the chemotherapy of experimental brain tumors: development of an experimental model. Cancer Res 30:2394–2400

    CAS  PubMed  Google Scholar 

  22. Szatmari T, Lumniczky K, Desaknai S, Trajcevski S, Hidvegi EJ, Hamada H, Safrany G (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97:546–553

    Article  CAS  PubMed  Google Scholar 

  23. Vallieres L, Sawchenko PE (2003) Bone marrow-derived cells that populate the adult mouse brain preserve their hematopoietic identity. J Neurosci 23:5197–5207

    CAS  PubMed  Google Scholar 

  24. Villeneuve J, Tremblay P, Vallieres L (2005) Tumor necrosis factor reduces brain tumor growth by enhancing macrophage recruitment and microcyst formation. Cancer Res 65:3928–3936

    Article  CAS  PubMed  Google Scholar 

  25. Mizuguchi H, Xu Z, Ishii-Watabe A, Uchida E, Hayakawa T (2000) IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 1:376–382

    Article  CAS  PubMed  Google Scholar 

  26. Nag S, Papneja T, Venugopalan R, Stewart DJ (2005) Increased angiopoietin2 expression is associated with endothelial apoptosis and blood–brain barrier breakdown. Lab Invest 85:1189–1198

    Article  CAS  PubMed  Google Scholar 

  27. Xu Y, Liu YJ, Yu Q (2004) Angiopoietin-3 is tethered on the cell surface via heparan sulfate proteoglycans. J Biol Chem 279:41179–41188

    Article  CAS  PubMed  Google Scholar 

  28. Rothstein JD, Brem H (2001) Excitotoxic destruction facilitates brain tumor growth. Nat Med 7:994–995

    Article  CAS  PubMed  Google Scholar 

  29. Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M (2001) Glutamate release promotes growth of malignant gliomas. Nat Med 7:1010–1015

    Article  CAS  PubMed  Google Scholar 

  30. Savaskan NE, Heckel A, Hahnen E, Engelhorn T, Doerfler A, Ganslandt O, Nimsky C, Buchfelder M, Eyupoglu IY (2008) Small interfering RNA-mediated xCT silencing in gliomas inhibits neurodegeneration and alleviates brain edema. Nat Med 14:629–632

    Article  CAS  PubMed  Google Scholar 

  31. Zadeh G, Qian B, Okhowat A, Sabha N, Kontos CD, Guha A (2004) Targeting the Tie2/Tek receptor in astrocytomas. Am J Pathol 164:467–476

    CAS  PubMed  Google Scholar 

  32. Rondaij MG, Bierings R, Kragt A, van Mourik JA, Voorberg J (2006) Dynamics and plasticity of Weibel-Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol 26:1002–1007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Cancer Research Society and the Natural Sciences and Engineering Research Council of Canada. L.V. received a Career Award from the Rx&D Health Research Foundation and the Canadian Institutes for Health Research (CIHR). M.J.B. was supported by grants to L.V. from the CIHR and the Laurye Lapointe Foundation. N.R. was the recipient of a scholarship from the Consejo Nacional de Ciencia y Tecnología de México. J.V. was supported by studentships from the CIHR and the Fonds de la Recherche en Santé du Québec. We thank Mr. Maurice Dufour for technical assistance with flow cytometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Vallières.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaudet, MJ., Rueda, N., Kobinger, G.P. et al. Construction of a ganciclovir-sensitive lentiviral vector to assess the influence of angiopoietin-3 and soluble Tie2 on glioma growth. J Neurooncol 99, 1–11 (2010). https://doi.org/10.1007/s11060-009-0095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-0095-y

Keywords

Navigation