Journal of Neuro-Oncology

, Volume 97, Issue 3, pp 323–337 | Cite as

Activated EGFR signaling increases proliferation, survival, and migration and blocks neuronal differentiation in post-natal neural stem cells

  • Angel Ayuso-Sacido
  • Jennifer A. Moliterno
  • Sebila Kratovac
  • Gurpreet S. Kapoor
  • Donald M. O’Rourke
  • Eric C. Holland
  • Jose Manuel García-Verdugo
  • Neeta S. Roy
  • John A. Boockvar
Laboratory Investigation - Human/Animal Tissue


Recent evidence supports the notion that transformation of undifferentiated neural stem cell (NSC) precursors may contribute to the development of glioblastoma multiforme (GBM). The over-expression and mutation of the epidermal growth factor receptor (EGFR), along with other cellular pathway mutations, plays a significant role in GBM maintenance progression. Though EGFR signaling is important in determining neural cell fate and conferring astrocyte differentiation, there is a limited understanding of its role in NSC and tumor stem cell (TSC) biology. We hypothesized that EGFR expression and mutation in post-natal NSCs may contribute to cellular aggressiveness including enhanced cellular proliferation, survival and migration. Stable subclones of C17.2 murine NSCs were transfected to over-express either the wild-type EGFR (wtEGFR) or its most common mutated variant EGFRvIII. Activated EGFR signaling in these cells induced behaviors characteristic of GBM TSCs, including enhanced proliferation, survival and migration, even in the absence of EGF ligand. wtEGFR activation was also found to block neuronal differentiation and was associated with a dramatic increase in chemotaxis in the presence of EGF. EGFRvIII expression lead to an increase in NSC proliferation and survival, while it simultaneously blocked neuronal differentiation and promoted glial fate. Our findings suggest that activated EGFR signaling enhances the aggressiveness of NSCs. Understanding the regulatory mechanisms of NSCs may lend insight into deregulated mechanisms of GBM TSC invasion, proliferation, survival and resistance to current treatment modalities.


EGFR Neural stem cells Glioma Brain tumors 

Supplementary material

11060_2009_35_MOESM1_ESM.pdf (636 kb)
Supplementary material 1 (PDF 635 kb)


  1. 1.
    Sibilia M, Wagner EF (1995) Strain-dependent epithelial defects in mice lacking the EGF receptor. Science 269:234–238CrossRefPubMedGoogle Scholar
  2. 2.
    Zhu G, Mehler MF, Mabie PC, Kessler JA (2000) Developmental changes in neural progenitor cell lineage commitment do not depend on epidermal growth factor receptor signaling. J Neurosci Res 59:312–320CrossRefPubMedGoogle Scholar
  3. 3.
    Kornblum HI, Yanni DS, Easterday MC, Seroogy KB (2000) Expression of the EGF receptor family members ErbB2, ErbB3, and ErbB4 in germinal zones of the developing brain and in neurosphere cultures containing CNS stem cells. Dev Neurosci 22:16–24CrossRefPubMedGoogle Scholar
  4. 4.
    Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574PubMedGoogle Scholar
  5. 5.
    Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609PubMedGoogle Scholar
  6. 6.
    Frederick L, Wang XY, Eley G, James CD (2000) Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60:1383--1387PubMedGoogle Scholar
  7. 7.
    Liu L, Backlund LM, Nilsson BR, Grander D, Ichimura K, Goike HM, Collins VP (2005) Clinical significance of EGFR amplification and the aberrant EGFRvIII transcript in conventionally treated astrocytic gliomas. J Mol Med 83:917–926CrossRefPubMedGoogle Scholar
  8. 8.
    Rasheed BK, Wiltshire RN, Bigner SH, Bigner DD (1999) Molecular pathogenesis of malignant gliomas. Curr Opin Oncol 11:162–167CrossRefPubMedGoogle Scholar
  9. 9.
    Tomioka R, Okamoto K, Furuta T, Fujiyama F, Iwasato T, Yanagawa Y, Obata K, Kaneko T, Tamamaki N (2005) Demonstration of long-range GABAergic connections distributed throughout the mouse neocortex. Eur J Neurosci 21:1587–1600CrossRefPubMedGoogle Scholar
  10. 10.
    Ghosh MK, Sharma P, Harbor PC, Rahaman SO, Haque SJ (2005) PI3K-AKT pathway negatively controls EGFR-dependent DNA-binding activity of Stat3 in glioblastoma multiforme cells. Oncogene 24:7290–7300CrossRefPubMedGoogle Scholar
  11. 11.
    Klingler-Hoffmann M, Bukczynska P, Tiganis T (2003) Inhibition of phosphatidylinositol 3-kinase signaling negates the growth advantage imparted by a mutant epidermal growth factor receptor on human glioblastoma cells. Int J Cancer 105:331–339CrossRefPubMedGoogle Scholar
  12. 12.
    Moscatello DK, Holgado-Madruga M, Emlet DR, Montgomery RB, Wong AJ (1998) Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J Biol Chem 273:200–206CrossRefPubMedGoogle Scholar
  13. 13.
    Narita Y, Nagane M, Mishima K, Huang HJ, Furnari FB, Cavenee WK (2002) Mutant epidermal growth factor receptor signaling down-regulates p27 through activation of the phosphatidylinositol 3-kinase/Akt pathway in glioblastomas. Cancer Res 62:6764–6769PubMedGoogle Scholar
  14. 14.
    Wei Q, Clarke L, Scheidenhelm DK, Qian B, Tong A, Sabha N, Karim Z, Bock NA, Reti R, Swoboda R, Purev E, Lavoie JF, Bajenaru ML, Shannon P, Herlyn D, Kaplan D, Henkelman RM, Gutmann DH, Guha A (2006) High-grade glioma formation results from postnatal pten loss or mutant epidermal growth factor receptor expression in a transgenic mouse glioma model. Cancer Res 66:7429–7437CrossRefPubMedGoogle Scholar
  15. 15.
    Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15:1913–1925CrossRefPubMedGoogle Scholar
  16. 16.
    Halatsch ME, Schmidt U, Botefur IC, Holland JF, Ohnuma T (2000) Marked inhibition of glioblastoma target cell tumorigenicity in vitro by retrovirus-mediated transfer of a hairpin ribozyme against deletion-mutant epidermal growth factor receptor messenger RNA. J Neurosurg 92:297–305CrossRefPubMedGoogle Scholar
  17. 17.
    Holland EC (2004) Mouse models of human cancer as tools in drug development. Cancer Cell 6:197–198CrossRefPubMedGoogle Scholar
  18. 18.
    Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA (2000) Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA 97:13883–13888CrossRefPubMedGoogle Scholar
  19. 19.
    Mason JL, Toews A, Hostettler JD, Morell P, Suzuki K, Goldman JE, Matsushima GK (2004) Oligodendrocytes and progenitors become progressively depleted within chronically demyelinated lesions. Am J Pathol 164:1673–1682PubMedGoogle Scholar
  20. 20.
    Parsa AT, Holland EC (2004) Cooperative translational control of gene expression by Ras and Akt in cancer. Trends Mol Med 10:607–613CrossRefPubMedGoogle Scholar
  21. 21.
    Alvarez ML, Gonzalez LO, Barbon JJ, Astudillo A, Vizoso FJ (2004) Expression and clinical significance of pepsinogen C in uveal melanomas. Int J Biol Markers 19:240–244PubMedGoogle Scholar
  22. 22.
    Gritti A, Bonfanti L, Doetsch F, Caille I, Alvarez-Buylla A, Lim DA, Galli R, Verdugo JM, Herrera DG, Vescovi AL (2002) Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci 22:437–445PubMedGoogle Scholar
  23. 23.
    Merkle FT, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci USA 101:17528–17532CrossRefPubMedGoogle Scholar
  24. 24.
    Palma V, Lim DA, Dahmane N, Sanchez P, Brionne TC, Herzberg CD, Gitton Y, Carleton A, Alvarez-Buylla A, Ruiz i Altaba A (2005) Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132:335–344CrossRefPubMedGoogle Scholar
  25. 25.
    Seri B, Garcia-Verdugo JM, Collado-Morente L, McEwen BS, Alvarez-Buylla A (2004) Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 478:359–378CrossRefPubMedGoogle Scholar
  26. 26.
    Spassky N, Merkle FT, Flames N, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18CrossRefPubMedGoogle Scholar
  27. 27.
    Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6:425–436CrossRefPubMedGoogle Scholar
  28. 28.
    Wechsler-Reya R, Scott MP (2001) The developmental biology of brain tumors. Annu Rev Neurosci 24:385–428CrossRefPubMedGoogle Scholar
  29. 29.
    Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744CrossRefPubMedGoogle Scholar
  30. 30.
    Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP, Messing A, Parada LF (2005) Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8:119–130CrossRefPubMedGoogle Scholar
  31. 31.
    Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716CrossRefPubMedGoogle Scholar
  32. 32.
    Laker C, Meyer J, Schopen A, Friel J, Heberlein C, Ostertag W, Stocking C (1998) Host cis-mediated extinction of a retrovirus permissive for expression in embryonal stem cells during differentiation. J Virol 72:339–348PubMedGoogle Scholar
  33. 33.
    Okamoto I, Kenyon LC, Emlet DR, Mori T, Sasaki J, Hirosako S, Ichikawa Y, Kishi H, Godwin AK, Yoshioka M, Suga M, Matsumoto M, Wong AJ (2003) Expression of constitutively activated EGFRvIII in non-small cell lung cancer. Cancer Sci 94:50–56CrossRefPubMedGoogle Scholar
  34. 34.
    Yan J, Welsh AM, Bora SH, Snyder EY, Koliatsos VE (2004) Differentiation and tropic/trophic effects of exogenous neural precursors in the adult spinal cord. J Comp Neurol 480:101–114CrossRefPubMedGoogle Scholar
  35. 35.
    Boockvar JA, Kapitonov D, Kapoor G, Schouten J, Counelis GJ, Bogler O, Snyder EY, McIntosh TK, O’Rourke DM (2003) Constitutive EGFR signaling confers a motile phenotype to neural stem cells. Mol Cell Neurosci 24:1116–1130CrossRefPubMedGoogle Scholar
  36. 36.
    Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400CrossRefPubMedGoogle Scholar
  37. 37.
    Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CL (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68:33–51CrossRefPubMedGoogle Scholar
  38. 38.
    Snyder EY, Yoon C, Flax JD, Macklis JD (1997) Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc Natl Acad Sci USA 94:11663–11668CrossRefPubMedGoogle Scholar
  39. 39.
    Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, Alvarez-Buylla A (2006) PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51:187–199CrossRefPubMedGoogle Scholar
  40. 40.
    Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E, Bengzon J, Jacobsen SE, Nuber UA (2007) CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res 67:5727–5736CrossRefPubMedGoogle Scholar
  41. 41.
    Pedersen MW, Tkach V, Pedersen N, Berezin V, Poulsen HS (2004) Expression of a naturally occurring constitutively active variant of the epidermal growth factor receptor in mouse fibroblasts increases motility. Int J Cancer 108:643–653CrossRefPubMedGoogle Scholar
  42. 42.
    Wang MY, Lu KV, Zhu S, Dia EQ, Vivanco I, Shackleford GM, Cavenee WK, Mellinghoff IK, Cloughesy TF, Sawyers CL, Mischel PS (2006) Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Res %R 101158/0008-5472CAN-04-4392 66:7864–7869Google Scholar
  43. 43.
    Li B, Yuan M, Kim IA, Chang CM, Bernhard EJ, Shu HK (2004) Mutant epidermal growth factor receptor displays increased signaling through the phosphatidylinositol-3 kinase/AKT pathway and promotes radioresistance in cells of astrocytic origin. Oncogene 23:4594–4602CrossRefPubMedGoogle Scholar
  44. 44.
    Luwor RB, Zhu HJ, Walker F, Vitali AA, Perera RM, Burgess AW, Scott AM, Johns TG (2004) The tumor-specific de2-7 epidermal growth factor receptor (EGFR) promotes cells survival and heterodimerizes with the wild-type EGFR. Oncogene 23:6095–6104CrossRefPubMedGoogle Scholar
  45. 45.
    Aguirre A, Rizvi TA, Ratner N, Gallo V (2005) Overexpression of the epidermal growth factor receptor confers migratory properties to nonmigratory postnatal neural progenitors. J Neurosci 25:11092–11106CrossRefPubMedGoogle Scholar
  46. 46.
    Ding H, Shannon P, Lau N, Wu X, Roncari L, Baldwin RL, Takebayashi H, Nagy A, Gutmann DH, Guha A (2003) Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res 63:1106–1113PubMedGoogle Scholar
  47. 47.
    Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17:5820–5829PubMedGoogle Scholar
  48. 48.
    Burrows RC, Wancio D, Levitt P, Lillien L (1997) Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron 19:251–267CrossRefPubMedGoogle Scholar
  49. 49.
    Moon C, Yoo JY, Matarazzo V, Sung YK, Kim EJ, Ronnett GV (2002) Leukemia inhibitory factor inhibits neuronal terminal differentiation through STAT3 activation. Proc Natl Acad Sci USA 99:9015–9020CrossRefPubMedGoogle Scholar
  50. 50.
    Yang Y, Ren W, Chen F (2006) Knockdown of Stat3 in C17.2 neural stem cells facilitates the generation of neurons: a possibility of transplantation with a low level of oncogene. Neuroreport 17:235–238CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Angel Ayuso-Sacido
    • 1
    • 5
  • Jennifer A. Moliterno
    • 1
  • Sebila Kratovac
    • 1
  • Gurpreet S. Kapoor
    • 3
  • Donald M. O’Rourke
    • 3
  • Eric C. Holland
    • 4
  • Jose Manuel García-Verdugo
    • 5
  • Neeta S. Roy
    • 2
  • John A. Boockvar
    • 1
    • 6
  1. 1.Neurosurgical Laboratory for Translational Stem Cell Research, Department of Neurosurgery, Weill Cornell Brain Tumor CenterWeill Cornell Medical College of Cornell UniversityNew YorkUSA
  2. 2.Department of Neurology and NeuroscienceWeill Cornell Medical College of Cornell UniversityNew YorkUSA
  3. 3.Department of Neurological SurgeryUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  4. 4.Department of Neurological SurgeryMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  5. 5.Department of Cell MorphologyCentro de Investigación Principe Felipe and RETICS-CIBERNEDValenciaSpain
  6. 6.Department of Neurological SurgeryWeill Cornell Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations