Relationship of pre-surgery metabolic and physiological MR imaging parameters to survival for patients with untreated GBM

Abstract

Glioblastoma Multiforme (GBM) are heterogeneous lesions, both in terms of their appearance on anatomic images and their response to therapy. The goal of this study was to evaluate the prognostic value of parameters derived from physiological and metabolic images of these lesions. Fifty-six patients with GBM were scanned immediately before surgical resection using conventional anatomical MR imaging and, where possible, perfusion-weighted imaging, diffusion-weighted imaging, and proton MR spectroscopic imaging. The median survival time was 517 days, with 15 patients censored. Absolute anatomic lesion volumes were not associated with survival but patients for whom the combined volume of contrast enhancement and necrosis was a large percentage of the T2 hyperintense lesion had relatively poor survival. Other volumetric parameters linked with less favorable survival were the volume of the region with elevated choline to N-acetylaspartate index (CNI) and the volume within the T2 lesion that had apparent diffusion coefficient (ADC) less than 1.5 times that in white matter. Intensity parameters associated with survival were the maximum and the sum of levels of lactate and of lipid within the CNI lesion, as well as the magnitude of the 10th percentile of the normalized ADC within the contrast-enhancing lesion. Patients whose imaging parameters indicating that lesions with a relatively large percentage with breakdown of the blood brain barrier or necrosis, large regions with abnormal metabolism or areas with restricted diffusion have relatively poor survival. These parameters may provide useful information for predicting outcome and for the stratification of patients into high or low risk groups for clinical trials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Oh J, Henry RG, Pirzkall A, Lu Y, Li X, Catalaa I et al (2004) Survival analysis in patients with glioblastoma multiforme: predictive value of choline-to-N-acetylaspartate index, apparent diffusion coefficient, and relative cerebral blood volume. J Magn Reson Imaging 19:546–554. doi:10.1002/jmri.20039

    PubMed  Article  Google Scholar 

  2. 2.

    Salvati M, Cervoni L, Artico M, Caruso R, Gagliardi FM (1998) Long-term survival in patients with supratentorial glioblastoma. J Neurooncol 36:61–64. doi:10.1023/A:1017926603341

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Simpson JR, Horton J, Scott C, Curran WJ, Rubin P, Fischbach J et al (1993) Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys 26:239–244

    PubMed  CAS  Google Scholar 

  4. 4.

    Kowalczuk A, Macdonald RL, Amidei C, Dohrmann G 3rd, Erickson RK, Hekmatpanah J et al (1997) Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. Neurosurgery 41:1028–1036. doi:10.1097/00006123-199711000-00004 (discussion 1036–1038)

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, De Monte F et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198

    PubMed  CAS  Google Scholar 

  6. 6.

    Lamborn KR, Chang SM, Prados MD (2004) Prognostic factors for survival of patients with glioblastoma: recursive partitioning analysis. Neuro-Oncology 6:227–235. doi:10.1215/S1152851703000620

    PubMed  Article  Google Scholar 

  7. 7.

    McLendon RE, Halperin EC (2003) Is the long-term survival of patients with intracranial glioblastoma multiforme overstated? Cancer 98:1745–1748. doi:10.1002/cncr.11666

    PubMed  Article  Google Scholar 

  8. 8.

    Croteau D, Mikkelsen T (2001) Adults with newly diagnosed high-grade gliomas. Curr Treat Options Oncol 2:507–515. doi:10.1007/s11864-001-0072-y

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Pirzkall A, McKnight TR, Graves EE, Carol MP, Sneed PK, Wara WW et al (2001) MR-spectroscopy guided target delineation for high-grade gliomas. Int J Radiat Oncol Biol Phys 50:915–928. doi:10.1016/S0360-3016(01)01548-6

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Giese A, Westphal M (2001) Treatment of malignant glioma: a problem beyond the margins of resection. J Cancer Res Clin Oncol 127:217–225. doi:10.1007/s004320000188

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    McKnight TR, von dem Bussche MH, Vigneron DB, Lu Y, Berger MS, McDermott MW et al (2002) Histopathological validation of a three-dimensional magnetic resonance spectroscopy index as a predictor of tumor presence. J Neurosurg 97:794–802

    PubMed  Google Scholar 

  12. 12.

    Pirzkall A, Li X, Oh J, Chang S, Berger MS, Larson DA et al (2004) 3D MRSI for resected high-grade gliomas before RT: tumor extent according to metabolic activity in relation to MRI. Int J Radiat Oncol Biol Phys 59:126–137. doi:10.1016/j.ijrobp.2003.08.023

    PubMed  Google Scholar 

  13. 13.

    Chen J, Xia J, Zhou YC, Xia LM, Zhu WZ, Zou ML et al (2005) Correlation between magnetic resonance diffusion weighted imaging and cell density in astrocytoma. Zhonghua Zhong Liu Za Zhi 27:309–311

    PubMed  Google Scholar 

  14. 14.

    Fuss M, Wenz F, Essig M, Muenter M, Debus J, Herman TS et al (2001) Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy. Int J Radiat Oncol Biol Phys 51:478–482. doi:10.1016/S0360-3016(01)01691-1

    PubMed  CAS  Google Scholar 

  15. 15.

    Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265. doi:10.1002/mrm.1910140211

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Chenevert TL, Stegman LD, Taylor JM, Robertson PL, Greenberg HS, Rehemtulla A et al (2000) Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 92:2029–2036. doi:10.1093/jnci/92.24.2029

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Kono K, Inoue Y, Nakayama K, Shakudo M, Morino M, Ohata K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22:1081–1088

    PubMed  CAS  Google Scholar 

  18. 18.

    Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60. doi:10.1002/(SICI)1522-2586(199901)9:1<53::AID-JMRI7>3.0.CO;2-2

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Mardor Y, Pfeffer R, Spiegelmann R, Roth Y, Maier SE, Nissim O et al (2003) Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J Clin Oncol 21:1094–1100. doi:10.1200/JCO.2003.05.069

    PubMed  Article  Google Scholar 

  20. 20.

    Kuznetsov YE, Caramanos Z, Antel SB, Preul MC, Leblanc R, Villemure JG et al (2003) Proton magnetic resonance spectroscopic imaging can predict length of survival in patients with supratentorial gliomas. Neurosurgery 53:565–574. doi:10.1227/01.NEU.0000079331.21178.8E (discussion 574–576)

    PubMed  Article  Google Scholar 

  21. 21.

    Tarnawski R, Sokol M, Pieniazek P, Maciejewski B, Walecki J, Miszczyk L et al (2002) 1H-MRS in vivo predicts the early treatment outcome of postoperative radiotherapy for malignant gliomas. Int J Radiat Oncol Biol Phys 52:1271–1276. doi:10.1016/S0360-3016(01)02769-9

    PubMed  Article  Google Scholar 

  22. 22.

    Li X, Jin H, Lu Y, Oh J, Chang S, Nelson SJ (2004) Identification of MRI and 1H MRSI parameters that may predict survival for patients with malignant gliomas. NMR Biomed 17:10–20. doi:10.1002/nbm.858

    PubMed  Article  Google Scholar 

  23. 23.

    Barker FG 2nd, Prados MD, Chang SM, Gutin PH, Lamborn KR, Larson DA et al (1996) Radiation response and survival time in patients with glioblastoma multiforme. J Neurosurg 84:442–448

    PubMed  Google Scholar 

  24. 24.

    Gamburg ES, Regine WF, Patchell RA, Strottmann JM, Mohiuddin M, Young AB (2000) The prognostic significance of midline shift at presentation on survival in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 48:1359–1362. doi:10.1016/S0360-3016(00)01410-3

    PubMed  CAS  Google Scholar 

  25. 25.

    Keles GE, Lamborn KR, Chang SM, Prados MD, Berger MS (2004) Volume of residual disease as a predictor of outcome in adult patients with recurrent supratentorial glioblastomas multiforme who are undergoing chemotherapy. J Neurosurg 100:41–46

    PubMed  Article  Google Scholar 

  26. 26.

    Kreth FW, Berlis A, Spiropoulou V, Faist M, Scheremet R, Rossner R et al (1999) The role of tumor resection in the treatment of glioblastoma multiforme in adults. Cancer 86:2117–2123. doi:10.1002/(SICI)1097-0142(19991115)86:10<2117::AID-CNCR33>3.0.CO;2-8

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Keles GE, Anderson B, Berger MS (1999) The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg Neurol 52:371–379. doi:10.1016/S0090-3019(99)00103-2

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Nelson SJ, Nalbandian AB, Proctor E, Vigneron DB (1994) Registration of images from sequential MR studies of the brain. J Magn Reson Imaging 4:877–883. doi:10.1002/jmri.1880040621

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Saraswathy S (2006) Semi-automated segmentation of brain tumor lesions in MR images [abstract]. International Society of Magnetic Resonance Imaging, Seattle

    Google Scholar 

  30. 30.

    Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57. doi:10.1109/42.906424

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Chan AA, Nelson SJ (2004) Simplified gamma-variate fitting of perfusion curves. In: Biomedical imaging: macro to nano. IEEE international symposium, vol 2, pp 1067–1070

  32. 32.

    Johnson G, Wetzel SG, Cha S, Babb J, Tofts PS (2004) Measuring blood volume and vascular transfer constant from dynamic, T(2)*-weighted contrast-enhanced MRI. Magn Reson Med 51:961–968. doi:10.1002/mrm.20049

    PubMed  Article  Google Scholar 

  33. 33.

    Lee MC, Cha S, Chang SM, Nelson SJ (2005) Dynamic susceptibility contrast perfusion imaging of radiation effects in normal-appearing brain tissue: changes in the first-pass and recirculation phases. J Magn Reson Imaging 21:683–693. doi:10.1002/jmri.20298

    PubMed  Article  Google Scholar 

  34. 34.

    Hartkens T, Rueckert D, Schnabel JA, Hawkes DJ, Hill DLG (2002) VTK CISG registration toolkit: an open source software package for affine and non-rigid registration of single- and multimodal 3D images. [abstract] BVM 2002. Springer-Verlag, Leipzig

    Google Scholar 

  35. 35.

    Moonen CT, von Kienlin M, van Zijl PC, Cohen J, Gillen J, Daly P et al (1989) Comparison of single-shot localization methods (STEAM and PRESS) for in vivo proton NMR spectroscopy. NMR Biomed 2:201–208. doi:10.1002/nbm.1940020506

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Tran TK, Vigneron DB, Sailasuta N, Tropp J, Le Roux P, Kurhanewicz J et al (2000) Very selective suppression pulses for clinical MRSI studies of brain and prostate cancer. Magn Reson Med 43:23–33. doi:10.1002/(SICI)1522-2594(200001)43:1<23::AID-MRM4>3.0.CO;2-E

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Star-Lack J, Spielman D, Adalsteinsson E, Kurhanewicz J, Terris DJ, Vigneron DB (1998) In vivo lactate editing with simultaneous detection of choline, creatine, NAA, and lipid singlets at 1.5 T using PRESS excitation with applications to the study of brain and head and neck tumors. J Magn Reson 133:243–254. doi:10.1006/jmre.1998.1458

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Nelson SJ (2001) Analysis of volume MRI and MR spectroscopic imaging data for the evaluation of patients with brain tumors. Magn Reson Med 46:228–239. doi:10.1002/mrm.1183

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Nelson SJ, Cha S (2003) Imaging glioblastoma multiforme. Cancer J 9:134–145. doi:10.1097/00130404-200303000-00009

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    McKnight TR, Noworolski SM, Vigneron DB, Nelson SJ (2001) An automated technique for the quantitative assessment of 3D-MRSI data from patients with glioma. J Magn Reson Imaging 13:167–177. doi:10.1002/1522-2586(200102)13:2<167::AID-JMRI1026>3.0.CO;2-K

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Catalaa I, Henry R, Dillon WP, Graves EE, McKnight TR, Lu Y et al (2006) Perfusion, diffusion and spectroscopy values in newly diagnosed cerebral gliomas. NMR Biomed 19:463–475. doi:10.1002/nbm.1059

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998

    PubMed  Google Scholar 

  43. 43.

    Lupo JM, Cha S, Chang SM, Nelson SJ (2005) Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity. AJNR Am J Neuroradiol 26:1446–1454

    PubMed  Google Scholar 

  44. 44.

    Cha S, Lupo JM, Chen MH, Lamborn KR, McDermott MW, Berger MS et al (2007) Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 28:1078–1084. doi:10.3174/ajnr.A0484

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Lupo JM, Lee MC, Han ET, Cha S, Chang SM, Berger MS et al (2006) Feasibility of dynamic susceptibility contrast perfusion MR imaging at 3T using a standard quadrature head coil and eight-channel phased-array coil with and without SENSE reconstruction. J Magn Reson Imaging 24:520–529. doi:10.1002/jmri.20673

    PubMed  Article  Google Scholar 

  46. 46.

    Rana AK, Wardlaw JM, Armitage PA, Bastin ME (2003) Apparent diffusion coefficient (ADC) measurements may be more reliable and reproducible than lesion volume on diffusion-weighted images from patients with acute ischaemic stroke-implications for study design. Magn Reson Imaging 21:617–624. doi:10.1016/S0730-725X(03)00087-0

    PubMed  Article  Google Scholar 

  47. 47.

    Sinha S, Bastin ME, Whittle IR, Wardlaw JM (2002) Diffusion tensor MR imaging of high-grade cerebral gliomas. AJNR Am J Neuroradiol 23:520–527

    PubMed  Google Scholar 

  48. 48.

    Henkelman RM (1990) Diffusion-weighted MR imaging: a useful adjunct to clinical diagnosis or a scientific curiosity? AJNR Am J Neuroradiol 11:932–934

    Google Scholar 

  49. 49.

    Le Bihan D, Douek P, Argyropoulou M, Turner R, Patronas N, Fulham M (1993) Diffusion and perfusion magnetic resonance imaging in brain tumors. Top Magn Reson Imaging 5:25–31. doi:10.1097/00002142-199300520-00005

    PubMed  Article  Google Scholar 

  50. 50.

    Tien RD, Felsberg GJ, Friedman H, Brown M, MacFall J (1994) MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. AJR Am J Roentgenol 162:671–677

    PubMed  CAS  Google Scholar 

  51. 51.

    Gauvain KM, McKinstry RC, Mukherjee P, Perry A, Neil JJ, Kaufman BA et al (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR Am J Roentgenol 177:449–454

    PubMed  CAS  Google Scholar 

  52. 52.

    Li Y, Osorio JA, Ozturk-Isik E, Chen AP, Xu D, Crane JC et al (2006) Considerations in applying 3D PRESS H-1 brain MRSI with an eight-channel phased-array coil at 3 T. Magn Reson Imaging 24:1295–1302. doi:10.1016/j.mri.2006.07.012

    PubMed  Article  Google Scholar 

  53. 53.

    Ozturk E, Banerjee S, Majumdar S, Nelson SJ (2006) Partially parallel MR spectroscopic imaging of gliomas at 3T. Conf Proc IEEE Eng Med Biol Soc 1:493–496

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by UC Discovery grants LSIT01-10107 and ITL-BIO04-10148 funded in conjunction with GE Healthcare, and NIH grants R01 CA059880 and P50 CA97257.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sarah J. Nelson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Crawford, F.W., Khayal, I.S., McGue, C. et al. Relationship of pre-surgery metabolic and physiological MR imaging parameters to survival for patients with untreated GBM. J Neurooncol 91, 337 (2009). https://doi.org/10.1007/s11060-008-9719-x

Download citation

Keywords

  • Newly diagnosed glioblastoma multiforme
  • MRSI
  • DWI
  • PWI
  • Survival