Journal of Neuro-Oncology

, Volume 86, Issue 1, pp 109–122 | Cite as

New prospects for management and treatment of inoperable and recurrent skull base meningiomas

  • Mahlon D. Johnson
  • Burak Sade
  • Michael T. Milano
  • Joung H. Lee
  • Steven A. Toms
Invited Manuscript


Skull base, including optic nerve, cavernous sinus, clival and foramen magnum tumors represent a major challenge for neurosurgeons and neuro-oncologists. Growth regulatory signaling pathways for these tumors are of increasing interest as potential targets for new chemotherapy. Those differentially activated in various grades of meningiomas are currently being identified as well. This article reviews some recent findings pathways that appear to regulate meningioma growth. Potential targets for novel therapies are also discussed.


Meningiomas Skull base Chemotherapy MAPK Akt COX-2 inhibitors PLC-gamma 


  1. 1.
    Bondy M, Ligon BL (1996) Epidemiology and etiology of intracranial meningiomas: a review. J Neurooncol 29:197–205PubMedCrossRefGoogle Scholar
  2. 2.
    Jaaskelainen J (1986) Seemingly complete removal of histologically benign intracranial meningioma: late recurrence rate and factors predicting recurrence in 637 patients. A multivariate analysis. Surg Neurol 26:461–469Google Scholar
  3. 3.
    Stafford SL, Perry A, Suman VJ et al (1998) Primarily resected meningiomas: outcomes and prognostic factors in 581 Mayo Clinic patients, 1978 through 1988. Mayo Clin Proc 73:936–942PubMedGoogle Scholar
  4. 4.
    Perry A, Stafford SL, Scheithauer BW et al (1997) Meningioma grading: an analysis of histologic parameters. Am J Surg Pathol 21:1455–1465PubMedCrossRefGoogle Scholar
  5. 5.
    Maroon JC, Kennerdell JS, Vidovich DV, Alba A, Sternau L (1994) Reccurent spheno-orbital meningioma. J Neurosurg 80:202–208PubMedGoogle Scholar
  6. 6.
    Black PM, Villavicencio AT, Rhouddou C, Loeffler JS (2001) Aggressive surgery and focal radiation in the management of meningiomas of the skull base: Preservation of function with the maintenance of local control. Acta Neurochir 143:555–562CrossRefGoogle Scholar
  7. 7.
    Drummond KJ, Zhu J-J, Black PM (2004) Meningiomas: updating basic science, management, and outcome. The Neurologist 10:113–130PubMedCrossRefGoogle Scholar
  8. 8.
    Kim Y-J, Ketter R, Henn W et al (2006) Histopathologic indicators of recurrence in meningiomas: correlation with clinical and genetic parameters. Virchows Arch 449:529–538PubMedCrossRefGoogle Scholar
  9. 9.
    Manelfe C, Lasjaunias P, Ruscalleda J (1986) Preoperative embolization of intracranial meningiomas. Am J Neuroradiol 7:963–972PubMedGoogle Scholar
  10. 10.
    Simpson D (1957) The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry 20:22–39PubMedGoogle Scholar
  11. 11.
    Dolenc V (1983) Direct microsurgical repair of intracavernous vascular lesions. J Neurosurg 58:824–831PubMedGoogle Scholar
  12. 12.
    O’Sullivan MG, van Loveren HR, Tew JM Jr (1997) The surgical respectability of meningiomas of the cavernous sinus. Neurosurgery 40:238–237PubMedCrossRefGoogle Scholar
  13. 13.
    Pamir MN, Kilic T, Bayrakli F, Peker S (2005) Changing strategy of cavernous sinus meningiomas: experience of a single institution. Surg Neurol 64(Suppl 2):S58–66PubMedCrossRefGoogle Scholar
  14. 14.
    Maruyama K, Shin M, Kurita H, Hawahara N, Morita A, Kirino T (2004) Proposed treatment strategy for cavernous sinus meningiomas: prospective study. Neurosurgery 55: 1068–1075PubMedCrossRefGoogle Scholar
  15. 15.
    Couldwell WT, Kan P, Liu JK, Apfelbaum RI (2006) Decompression of cavernous sinus meningioma for preservation and improvement of cranial nerve function. J Neurosurg 105:148–152PubMedGoogle Scholar
  16. 16.
    Honeybul S, Neil-Dwyer G, Lang DA, Evans BT, Ellison DW (2001) Sphenoid wing meningioma en plaque: A clinical review. Acta Neurochir (Wien) 143:749–758CrossRefGoogle Scholar
  17. 17.
    Shrivastava RK, Sen C, Costantino P, Rocca RD (2005) Sphenoorbital meningiomas: surgical limitations and lesions learned in their long-term management. J Neurosurg 103:491–497PubMedGoogle Scholar
  18. 18.
    Schick U, Bleyen J, Bani A, Hassler W (2006) Management of meningiomas en plaque of the sphenoid wing. J Neurosurg 104:208–214PubMedGoogle Scholar
  19. 19.
    Shrivastava RK, Sen C, Costantino P, Rocca RD (2005) Sphenoorbital meningiomas: surgical limitations and lesions learned in their long-term management. J Neurosurg 103:491–497PubMedGoogle Scholar
  20. 20.
    Maroon JC, Kennerdell JS, Vidovich DV, Abla A, Sternau L (1994) Recurrent spheno-orbital meningioma. J Neurosurg 80:202–208PubMedGoogle Scholar
  21. 21.
    Little K, Friedman AH, Sampson JH, Wanibuchi M, Fukushima T (2005) Surgical management of petroclival meningiomas: Defining resection goals based on risk of neurological morbidity and tumor recurrence rates in 137 patients. Neurosurgery 56:546–559PubMedCrossRefGoogle Scholar
  22. 22.
    Goel A, Muzumdar D (2004) Conventional posterior fossa approach for surgery on petroclival meningiomas: a report on an experience with 28 cases. Surg Neurol 62:332–340PubMedCrossRefGoogle Scholar
  23. 23.
    Roberti F, Sekhar LN, Kalavakonda C, Wright DC (2001) Posterior fossa meningiomas: surgical experience in 161 cases. Surg Neurol 56:8–21PubMedCrossRefGoogle Scholar
  24. 24.
    Couldwell WT, Fukushima T, Giannotta SL, Weiss MH (1996) Petroclival meningiomas: surgical experience with 109 cases. J Neurosurg 84:20–28PubMedGoogle Scholar
  25. 25.
    Samii M, Tatagiba M, Carvalho GA (1999) Resection of large petroclival meningiomas by the simple retrosigmoid route. J Clin Neurosci 6:27–30PubMedCrossRefGoogle Scholar
  26. 26.
    Jung HW, Yoo H, Paek SH, Choi KS (2000) Long-term outcome and growth rate of subtotally resected petroclival meningiomas: experience with 38 cases. Neurosurgery 46:567–575PubMedCrossRefGoogle Scholar
  27. 27.
    George B, Lot G (1995) Foramen magnum meningiomas: a review from personal experience of 37 cases and from a cooperative study of 106 cases. Neurosurg Quarterly 5:149–167Google Scholar
  28. 28.
    Bassiouni H, Ntoukas V, Siamak A et al (2006) Foramen magnum meningiomas: clinical outcome after microsurgical resection via a posterolateral suboccipital retrocondylar approach. 59:1177–1187Google Scholar
  29. 29.
    Schick U, Dott U, Hassler W (2004) Surgical management of meningiomas involving the optic nerve sheath. J Neurosurg 101:951–959PubMedGoogle Scholar
  30. 30.
    Roser F, Nakamura M, Martini-Thomas R, Samii M, Tatagiba M (2006) The role of surgery in meningiomas involving the optic nerve sheath. Clin Neurol Neurosurg 108:470–476PubMedCrossRefGoogle Scholar
  31. 31.
    Barbaro NM, Gutin PH, Wilson CB et al (1987) Radiation therapy in the treatment of partially resected meningiomas. Neurosurgery 20:525–528PubMedCrossRefGoogle Scholar
  32. 32.
    Taylor BW Jr, Marcus RB Jr, Friedman WA et al (1988) The meningioma controversy: postoperative radiation therapy. Int J Radiat Oncol Biol Phys 15:299–304PubMedCrossRefGoogle Scholar
  33. 33.
    Wara WM, Sheline GE, Newman H et al (1975) Radiation therapy of meningiomas. Am J Roentgenol Radium Ther Nucl Med 123:453–548PubMedGoogle Scholar
  34. 34.
    Goldsmith BJ, Wara WM, Wilson CB et al (1994) Postoperative irradiation for subtotally resected meningiomas. A retrospective analysis of 140 patients treated from 1967 to 1990. J Neurosurg 80:195–201PubMedGoogle Scholar
  35. 35.
    Miralbell R, Linggood RM, de la Monte S et al (1992) The role of radiotherapy in the treatment of subtotally resected benign meningiomas. J Neurooncol 13:157–164PubMedCrossRefGoogle Scholar
  36. 36.
    Deinsberger R, Tidstrand J, Sabitzer H et al (2004) LINAC radiosurgery in skull base meningiomas. Minim Invasive Neurosurg 47:333–338PubMedCrossRefGoogle Scholar
  37. 37.
    Kreil W, Luggin J, Fuchs I et al (2005) Long term experience of gamma knife radiosurgery for benign skull base meningiomas. J Neurol Neurosurg Psychiatry 76:1425–1430PubMedCrossRefGoogle Scholar
  38. 38.
    Lee JY, Kondziolka D, Flickinger JC et al (2007) Radiosurgery for intracranial meningiomas. Prog Neurol Surg 20:142–149PubMedGoogle Scholar
  39. 39.
    Mindermann T, de Rougemont O (2004) The significance of tumor location for Gamma Knife treatment of meningiomas. Stereotact Funct Neurosurg 82:194–195PubMedCrossRefGoogle Scholar
  40. 40.
    Nicolato A, Giorgetti P, Foroni R et al (2005) Gamma knife radiosurgery in skull base meningiomas: a possible relationship between somatostatin receptor decrease and early neurological improvement without tumour shrinkage at short-term imaging follow-up. Acta Neurochir (Wien) 147:367–374; discussion 374–375CrossRefGoogle Scholar
  41. 41.
    Pollock BE, Stafford SL (2005) Results of stereotactic radiosurgery for patients with imaging defined cavernous sinus meningiomas. Int J Radiat Oncol Biol Phys 62:1427–1431PubMedCrossRefGoogle Scholar
  42. 42.
    Selch MT, Ahn E, Laskari A et al (2004) Stereotactic radiotherapy for treatment of cavernous sinus meningiomas. Int J Radiat Oncol Biol Phys 59:101–111PubMedCrossRefGoogle Scholar
  43. 43.
    Zachenhofer I, Wolfsberger S, Aichholzer M et al (2006) Gamma-knife radiosurgery for cranial base meningiomas: experience of tumor control, clinical course, and morbidity in a follow-up of more than 8 years. Neurosurgery 58:28–36; discussion 28–36PubMedCrossRefGoogle Scholar
  44. 44.
    Chen JC, Giannotta SL, Yu C et al (2001) Radiosurgical management of benign cavernous sinus tumors: dose profiles and acute complications. Neurosurgery 48:1022–1030; discussion 1030–1032PubMedCrossRefGoogle Scholar
  45. 45.
    Loeffler JS, Niemierko A, Chapman PH (2003) Second tumors after radiosurgery: tip of the iceberg or a bump in the road? Neurosurgery 52:1436–1440; discussion 1440–1442PubMedCrossRefGoogle Scholar
  46. 46.
    Flickinger JC, Lunsford LD, Kondziolka D (1991) Dose-volume considerations in radiosurgery. Stereotact Funct Neurosurg 57:99–105PubMedCrossRefGoogle Scholar
  47. 47.
    Marks LB, Spencer DP (1991) The influence of volume on the tolerance of the brain to radiosurgery. J Neurosurg 75:177–180PubMedGoogle Scholar
  48. 48.
    Stafford SL, Pollock BE, Leavitt JA et al (2003) A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 55:1177–1181PubMedCrossRefGoogle Scholar
  49. 49.
    Debus J, Hug EB, Liebsch NJ et al (1997) Brainstem tolerance to conformal radiotherapy of skull base tumors. Int J Radiat Oncol Biol Phys 39:967–975PubMedCrossRefGoogle Scholar
  50. 50.
    Debus J, Hug EB, Liebsch NJ et al (1999) Dose-volume tolerance of the brainstem after high-dose radiotherapy. Front Radiat Ther Oncol 33:305–314PubMedGoogle Scholar
  51. 51.
    Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122PubMedGoogle Scholar
  52. 52.
    Alheit H, Saran FH, Warrington AP et al (1999) Stereotactically guided conformal radiotherapy for meningiomas. Radiother Oncol 50:145–150PubMedCrossRefGoogle Scholar
  53. 53.
    Brell M, Villa S, Teixidor P et al (2006) Fractionated stereotactic radiotherapy in the treatment of exclusive cavernous sinus meningioma: functional outcome, local control, and tolerance. Surg Neurol 65:28–33; discussion 33–34PubMedCrossRefGoogle Scholar
  54. 54.
    Debus J, Wuendrich M, Pirzkall A et al (2001) High efficacy of fractionated stereotactic radiotherapy of large base-of-skull meningiomas: long-term results. J Clin Oncol 19:3547–3553PubMedGoogle Scholar
  55. 55.
    Milker-Zabel S, Zabel-du Bois A, Huber P et al (2006) Fractionated stereotactic radiation therapy in the management of benign cavernous sinus meningiomas: long-term experience and review of the literature. Strahlenther Onkol 182:635–640PubMedCrossRefGoogle Scholar
  56. 56.
    Steinvorth S, Welzel G, Fuss M et al (2003) Neuropsychological outcome after fractionated stereotactic radiotherapy (FSRT) for base of skull meningiomas: a prospective 1-year follow-up. Radiother Oncol 69:177–182PubMedCrossRefGoogle Scholar
  57. 57.
    Baumert BG, Norton IA, Davis JB (2003) Intensity-modulated stereotactic radiotherapy vs. stereotactic conformal radiotherapy for the treatment of meningioma located predominantly in the skull base. Int J Radiat Oncol Biol Phys 57:580–592PubMedCrossRefGoogle Scholar
  58. 58.
    Pirzkall A, Carol M, Lohr F et al (2000) Comparison of intensity-modulated radiotherapy with conventional conformal radiotherapy for complex-shaped tumors. Int J Radiat Oncol Biol Phys 48:1371–1380PubMedCrossRefGoogle Scholar
  59. 59.
    Pirzkall A, Debus J, Haering P et al (2003) Intensity modulated radiotherapy (IMRT) for recurrent, residual, or untreated skull-base meningiomas: preliminary clinical experience. Int J Radiat Oncol Biol Phys 55:362–372PubMedCrossRefGoogle Scholar
  60. 60.
    Milker-Zabel S, Zabel-du Bois A, Huber P et al (2007) Intensity-Modulated Radiotherapy for Complex-Shaped Meningioma of the Skull Base: Long-term Experience of a Single Institution. Int J Radiat Oncol Biol Phys 68:858–863PubMedGoogle Scholar
  61. 61.
    Nakamura JL, Pirzkall A, Carol MP et al (2003) Comparison of intensity-modulated radiosurgery with gamma knife radiosurgery for challenging skull base lesions. Int J Radiat Oncol Biol Phys 55:99–109PubMedCrossRefGoogle Scholar
  62. 62.
    Gudjonsson O, Blomquist E, Nyberg G et al (1999) Stereotactic irradiation of skull base meningiomas with high energy protons. Acta Neurochir (Wien) 141:933–940CrossRefGoogle Scholar
  63. 63.
    Vernimmen FJ, Harris JK, Wilson JA et al (2001) Stereotactic proton beam therapy of skull base meningiomas. Int J Radiat Oncol Biol Phys 49:99–105PubMedCrossRefGoogle Scholar
  64. 64.
    Weber DC, Lomax AJ, Rutz HP et al (2004) Spot-scanning proton radiation therapy for recurrent, residual or untreated intracranial meningiomas. Radiother Oncol 71:251–258PubMedCrossRefGoogle Scholar
  65. 65.
    Noel G, Bollet MA, Calugaru V et al (2005) Functional outcome of patients with benign meningioma treated by 3D conformal irradiation with a combination of photons and protons. Int J Radiat Oncol Biol Phys 62:1412–1422PubMedCrossRefGoogle Scholar
  66. 66.
    Baumert BG, Norton IA, Lomax AJ et al (2004) Dose conformation of intensity-modulated stereotactic photon beams, proton beams, and intensity-modulated proton beams for intracranial lesions. Int J Radiat Oncol Biol Phys 60:1314–1324PubMedCrossRefGoogle Scholar
  67. 67.
    Korhonen K, Salminen T, Raitanen J et al (2006) Female predominance in meningiomas can not be explained by differences in progesterone, estrogen or androgen receptor expression. J Neurooncol 80:1–7PubMedCrossRefGoogle Scholar
  68. 68.
    Omulecka A, Papierz W, Nawrocka-Kunecka A et al (2006) Immunohistochemical expression of progesterone and estrogen receptors in meningiomas. Folia Neuropathol 44:111–115PubMedGoogle Scholar
  69. 69.
    Wolfsberger S, Doostkam S, Boecher-Schwarz HG et al (2004) Progesterone-receptor index in meningiomas: correlation with clinico-pathologial parameters and review of the literature. Neurosurg Rev 27:238–245PubMedGoogle Scholar
  70. 70.
    Perry A, Cai D, Scheithauer B et al (2000) Merlin, DAL-1 and progesterone receptor expression in clinicopathologic subsets of meningioma: a correlative immunohistochemical study of 175 cases. J Neuropathol Exp Neurol 59:872–879PubMedGoogle Scholar
  71. 71.
    Fewings P, Battersby R, Timperley W (2000) Long-term followup of progesterone receptor status in benign meningioma: a prognostic indicator of recurrence? J Neurosurg 92:401–405PubMedGoogle Scholar
  72. 72.
    Pravdenkova S, Al-Mefty O, Sawyer J et al (2006) Progesterone and estrogen receptors: opposing prognostic indicators in meningiomas. J Neurosurg 105: 163–173PubMedGoogle Scholar
  73. 73.
    Maiuri F, De Caro Mdel B, Esposito F et al (2007) Recurrences of meningiomas: predictive value of pathologic features and hormonal and growth factors. J Neuroncol 82:63–68CrossRefGoogle Scholar
  74. 74.
    Maiuri F, Montagnani S, Gallicchio B et al (1989) Oestrogen and progesterone sensitivity in cultured meningioma cells. Neurol Res 11:9–13PubMedGoogle Scholar
  75. 75.
    Adams E, Schrell U, Fahlbusch R et al (1990) Hormonal dependency of cerebral meningiomas. Part 2: In vitro effects of steroids, bromocriptine, and epidermal growth factor receptor on growth of meningiomas. J Neurosurg 73:750–755PubMedGoogle Scholar
  76. 76.
    Lamberts SW, Tanghe HL, Avezaat CJ et al (1992) Mifepristone (RU 486) treatment of meningiomas. J Neurol Neurosurg Psychiatry 55:486–490PubMedGoogle Scholar
  77. 77.
    Grunberg SM, Weis MH, Spitz IM, Ahmadi J, Sudan J, Russell CA, Lucci L, Stevenson LL (1991) Treatment of unresectable meningiomas with the anti-progesterone agent mifepristone. J Neurosurg 74:861–866PubMedGoogle Scholar
  78. 78.
    Grunberg SM, Weiss MH, Russell CA et al (2006) Long-term administration of mifepristone (RU486): clinical tolerance during extended treatment of meningioma. Cancer Invest 24:727–733PubMedCrossRefGoogle Scholar
  79. 79.
    Ragel BT, Gillespie DL, Kushnir V et al (2006) Calcium channel antagonists augment hydroxyurea and RU486-induced inhibition of meningioma growth in vivo and in vitro. Neurosurgery 59:1109–1120PubMedCrossRefGoogle Scholar
  80. 80.
    Goodwin J, Crowley J, Eyre H et al (1993) A phase II evaluation of Tamoxifen in unresectable or refrqactory meningiomas: a southweast Oncology Group study. J Neurooncol 15:75–77PubMedCrossRefGoogle Scholar
  81. 81.
    Schrell UM, Rittig MG, Anders M et al (1977) Hydroxyurea for treatment of unresectable and recurrent meningiomas. II Decrease in size of meningiomas in patients treated with hydroxyurea. J Neurosurg 86:840–844Google Scholar
  82. 82.
    Mason WP, Gentili F, Mac Donald DR, Hariharan S, Cruz CR Abrey LE (2002) Stabilization of disease progression by hydroxyurea in patients with recurrent or unresectable meningioma. J Neurosurg 97:341–346PubMedGoogle Scholar
  83. 83.
    Newton HB, Scott SR, Volpi C (2004) Hydroxyurea chemotherapy for meningiomas: Enlarged cohort with extended follow-up. Br J Neurosurg 18:495–499PubMedCrossRefGoogle Scholar
  84. 84.
    Hahn BM, Schrell Um, Sauer R, Fahlbusch R, Ganslandt O, Grabenbauer GG (2005) Prolonged oral hydroxyurea and concurrent 3-d conformal radiation in patients with progressive or recurrent meningioma: results of a pilot study. J Neurooncol 74:157–165PubMedCrossRefGoogle Scholar
  85. 85.
    Loven D, Hardoff R, Sever ZB, Steunmetz AP, Gornish M, Rappaport ZH, Fenig E, Ram Z, Sulkes A (2004) Nonresectable slow growing meningiomas treated with hydroxyurea. J Neurooncol 67:221–226PubMedCrossRefGoogle Scholar
  86. 86.
    Chamberlain MC, Tsao-Wei DD, Groshen S (2004) Temozolomide for treatment-resistant recurrent meningioma. Neurology 62:1210–1212PubMedGoogle Scholar
  87. 87.
    Chamberlain MC, Tsao-Wei DD, Groshen S (2006) Salvage chemotherapy with CPT-11 for recurrent meningioma. J Neuroncol 78:271–276CrossRefGoogle Scholar
  88. 88.
    Kaba SE, DeMonte F, Bruner JM et al (1997) The treatment of recurrent unresectable and malignant meningiomas with interferon alpha-2B. Neurosurgery 40:271–275PubMedCrossRefGoogle Scholar
  89. 89.
    Perry A, Gutmann DH, Reifenberger G (2004) Molecular pathogenesis of meningiomas. J Neuro-Oncol 70:183–202CrossRefGoogle Scholar
  90. 90.
    Gusella JF, Ramesh V, MacCollin M et al (1999) Merlin: the neurofibromatosis 2 tumor suppressor. Biochem Biophys Acta 1423:M29–36PubMedGoogle Scholar
  91. 91.
    McClatchey AI, Giovannini M (2005) Membrane organization and tumorigenesis- the NF2 tumor suppressor, Merlin. Genes Dev 19: 2265–2277PubMedCrossRefGoogle Scholar
  92. 92.
    Wellenreuther R, Kraus JA, Lenartz D et al (1995) Analysis of the neurofibromatosis 2 gene reveals molecular variants of meningioma. Am J Pathol 146:827–833PubMedGoogle Scholar
  93. 93.
    Vogel Y, Lenartz D, Schramm J et al (1997) Quantitative analysis of neurfibromatosis type 2 gene transcripts in meningiomas supports the concept of distinct molecular variants. Lab Invest 77:601–606PubMedGoogle Scholar
  94. 94.
    Rutledge MH, Sarrazin J, Rangaratnam S et al (1994) Evidence for complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet 6:180–184CrossRefGoogle Scholar
  95. 95.
    Lee JH, Sundaram V, Stein DJ et al (1997) Reduced expression of Schwannomin/Merlin in human sporadic meningiomas. Neurosurgery 40:578–587PubMedCrossRefGoogle Scholar
  96. 96.
    Antinheimo J, Haapasalo H, Haltia M et al (1997) Proliferation potential and histological features in neurofibromatosis 2-associated and sporadic meningiomas. J Neurosurg 87:610–614PubMedCrossRefGoogle Scholar
  97. 97.
    Lamszus K, Vahldeik F, Mautner VF et al (2000) Allelic losses in neurofibromatosis 2-associated meningiomas. J Neuropathol Exp Neurol 59:504–512PubMedGoogle Scholar
  98. 98.
    Dumanski JP, Rouleau GA, Nordenskjold M et al (1990) Molecular genetic analysis of chromosome 22 in 81 cases of meningioma. Cancer Res 50:5863–5867PubMedGoogle Scholar
  99. 99.
    Weisman AS, Raguet SS, Kelly PA (1987) Characterization of the epidermal growth factor receptor in human meningioma. Cancer Res 47:2172–2176PubMedGoogle Scholar
  100. 100.
    Jones NR, Rossi ML, Gregoriou M et al (1990) Epidermal growth factor receptor expression in 72 meningiomas. Cancer 66:152–155PubMedCrossRefGoogle Scholar
  101. 101.
    Johnson MD, Horiba M, Arteaga C (1994) The epidermal growth factor receptor is associated with phospholipase C γ in meningiomas. Human Pathol 25:146–153CrossRefGoogle Scholar
  102. 102.
    Carroll RS, Black PM, Zhang J et al (1997) Expression and activation of epidermal growth factor receptors in meningiomas. J Neurosurg 87:315–323PubMedGoogle Scholar
  103. 103.
    Wang J-L, Nister M, Hermansson M, Westermark B et al (1990) Expression of PDGF β-receptors in human meningioma cells. Int. J. Cancer 46:772–778PubMedCrossRefGoogle Scholar
  104. 104.
    Maxwell M, Galanopoulos T, Hedley-Whyte ET et al (1990) Human meningiomas co-express platelet-derived growth factor (PDGF) and PDGF-receptor genes and their protein products. Int J Cancer 46:16–21PubMedCrossRefGoogle Scholar
  105. 105.
    Shamah SM, ALberta JA, Giannobile WV et al (1997) Detection of activated platlet-derived growth factor receptors in human meningioma. Cancer Res 57:4141–4147PubMedGoogle Scholar
  106. 106.
    Lingood RM, Hsu DW, Efird JT et al (1995) TGF-alpha expression in meningioma-tumor progression and therapeutic response. J Neuro-Oncol 26:45–51CrossRefGoogle Scholar
  107. 107.
    Hsu QW, Efird JT, Hedley-Whyte ET (1998) MIB-1(Ki-67) index and transforming growth factor alpha (TGF-alpha) immunoreactivity are significant prognostic predictors for meningiomas. Neuropathol Appl Neurobiol 24:441–452PubMedCrossRefGoogle Scholar
  108. 108.
    Van Setten GB, Edstrom L, Stibler H et al (1999) Levels of transforming growth factor alpha (TGF-α) in human cerebrospinal fluid. Int J Dev Neurosci 17:131–134PubMedCrossRefGoogle Scholar
  109. 109.
    Adams EF, Schrell UMH, Thieruf P et al (1991) Autocrine control of human meningioma proliferation: secretion of platelet-derived growth factor-like molecules. Int J Cancer 49:398–402PubMedCrossRefGoogle Scholar
  110. 110.
    Todo T, Adams EF, Fahlbusch R et al (1996) Autocrine growth stimulation of human meningioma cells by platelet-derived growth factor. J Neurosurgery 84:852–859Google Scholar
  111. 111.
    Nister M, Enbland P, Backstrom G et al (1994) Platelet-derived growth factor (PDGF) in neoplastic and non-neoplastic cystic lesions of the central nervous system and in the cerebrospinal fluid. Br J Cancer 69:952–956PubMedGoogle Scholar
  112. 112.
    Pronk GL, Bos JL (1994) The role of p21 ras in receptor tyrosine kinase signaling. Biochim Biophys Acta 1198:131–147PubMedGoogle Scholar
  113. 113.
    Blume-Jensen P, Hunter T (2001) Oncogenic kinase signaling. Nature 411:355–365PubMedCrossRefGoogle Scholar
  114. 114.
    Shu J, Lee JH, Harwalkar JA et al (1999) Adenovirus-mediated gene transfer of dominant negative H-ras inhibits proliferation of primary meningioma cells. Neurosurgery 44:579–587PubMedCrossRefGoogle Scholar
  115. 115.
    Lewis TS, Shapiro PS, Ahn NG (1998) Signal transduction through MAP Kinase cascades. Adv Cancer Res 74:49–139PubMedGoogle Scholar
  116. 116.
    Marshall MS (1995) Ras target proteins in eukaryotic cells. FASEB J 9:1311–1318PubMedGoogle Scholar
  117. 117.
    Kock W (2000) Meaningful relationships: the regulation of the Ras/Raf/Mek/ERK pathway by protein interactions. Biochem J 351:289–305CrossRefGoogle Scholar
  118. 118.
    Sivaraman VS, Wang H, Nuvovo GJ et al (1997) Hyperexpression of mitogen-activated kinase in human breast carcinoma. J Clin Invst 7:1478–1483CrossRefGoogle Scholar
  119. 119.
    Mandell JW, Hussaini IM, Zecevic M et al (1998) In situ visualization of intratumor growth factor signaling. Am J Pathol 153:1411–1423PubMedGoogle Scholar
  120. 120.
    Johnson MD, Woodard A, Kim P et al (2001) Evidence for mitogen associated protein kinase activation and transduction of mitogenic signals from platelet derived growth factor in human meningioma cells. J Neurosurg 94:303–310Google Scholar
  121. 121.
    Mawrin C, Sasse T, Kirches E et al (2005) Different activation of mitogen activated protein kinase and Akt signalling is associated with aggressive phenotype of human meningiomas. Clin Cancer Res 11:4074–4082PubMedCrossRefGoogle Scholar
  122. 122.
    Nicholson KM, Anderson NG (2002) The Akt/PKB signaling pathway in human malignancy. Cell Signal 14:381–395PubMedCrossRefGoogle Scholar
  123. 123.
    Walker TR, Moore SM, Lawson MF et al (1998) Platelet-derived growth factor-BB and thrombin activate phophoinositide 3-kinase and protein kinase B: Role in mediating airway smooth muscle proliferation. Mol Pharmacol 54:1007–1015PubMedGoogle Scholar
  124. 124.
    Roche S, Koegl M, Courtneidge SA (1994) The phosphatidylinositol 3-kinase A is required for DNA synthesis by some but not all growth factors. PNAS 91:9185–9189PubMedCrossRefGoogle Scholar
  125. 125.
    Shayesteh L, Lu Y, Kuo W-L et al (1999) PI3KCA is implicated as an oncogene in ovarian cancer. Nat Genet 21:99–102PubMedCrossRefGoogle Scholar
  126. 126.
    Sun M, Wang G, Paciga JE et al (2001) AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH33T3 cells. Am J Pathol 159:431–437PubMedGoogle Scholar
  127. 127.
    Johnson MD, Okediji E, Woodard A el al (2002) Evidence for Phosphatidylinositol 3-Kinase Akt-p70S6K Pathway Activation and Transduction of Mitogenic Signals by Platelet Derived Growth Factor in Human Meningioma Cells J Neurosurg 97:668–675PubMedGoogle Scholar
  128. 128.
    Conway A-M, Rakhit S, Pyne S et al (1999) Platelet-derived-growth-factor stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role pertussis-toxin-sensitive G-proteins, c-Src tyrosine kinases and phosphoinositide 3-kinase. Biochem J 337:171–177PubMedCrossRefGoogle Scholar
  129. 129.
    Yart A, Laffargue M, Mayeux P et al (2001) A critical role for phosphoinositide 3-kinase upstream of Gab 1 and SHP2 in the activation of Ras and mitogen-activated protein kinase by epidermal growth factor. J Biol Chem 276:8856–8864PubMedCrossRefGoogle Scholar
  130. 130.
    Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71PubMedCrossRefGoogle Scholar
  131. 131.
    Lin L-L, Wartmann M, Lin AY et al (1993) cPLA2 is phosphorylated and activated by MAP kinase. Cell 27:269–278CrossRefGoogle Scholar
  132. 132.
    Castelli MG, Chiabrando C, Fanelli R et al (1989) Prostaglandin and thromboxane synthesis by human intracranial tumors. Cancer Res 15:1505–1508Google Scholar
  133. 133.
    Gaetani P, Butti G, Chiabrando C et al (1991) A study of the biological behavior of human brain tumors. Part I. Arachidonic acid metabolism and DNA content. J Neuro-Oncol 10:233–240Google Scholar
  134. 134.
    Wang D, Buchanan FG, Wang H et al (2005) Prostaglandin E2 enhances intestinal adenoma growth via activation of the Ras-mitogen-activated protein kinase cascade. Cancer Res 65:1822–1829PubMedCrossRefGoogle Scholar
  135. 135.
    Dannenberg AJ, Subbaramaiah K (2003) Targeting cyclooxygenase-2 in human neoplasia: Rationale and promise. Cancer Cell 4:431–436PubMedCrossRefGoogle Scholar
  136. 136.
    Pai R, Soreghan B, Szabo Il et al (2002) Prostaglandin E2 transactivates EGF receptor: A novel mechanism for promoting cancer growth and gastrointestinal hypertrophy. Nat Med 8:289–293PubMedCrossRefGoogle Scholar
  137. 137.
    Wang Z, Gluck S, Zhang L et al (1998) Requirement for phospholipase C-1 enzymatic activity in growth factor-induced mitogenesis. Mol Cell Biol 18:590–597PubMedGoogle Scholar
  138. 138.
    Wahl MI, Olashaw NE, Nishibe S et al (1989) Platelet-derived growth factor induces rapid and sustained tyrosine phosphorylation of phospholipase C-γ in quiescent BALB/c 3T3 cells. Mol Cell Biol 9:2934–2943PubMedGoogle Scholar
  139. 139.
    Buckley CT, Sekiya F, Kim YJ et al (2004) Identificationof phospholipase C-1 as a mitogen-activated protein kinase substrate. J Biol Chem 40:41807–41814CrossRefGoogle Scholar
  140. 140.
    Harari PM (2004) Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer 11:689–708PubMedCrossRefGoogle Scholar
  141. 141.
    Singer CF, Hudelist G, Lamm W et al (2004) Expression of tyrosine kinases in human malignancies as potential targets for kinase specific inhibitors. Endocrine-related Cancer 11:861–869PubMedCrossRefGoogle Scholar
  142. 142.
    Huang S, Armstrong EA, Benavente S et al (2004) Dual-agent targeting of the epidermal growth factor (EGFR): combining anti-EGFR antibody and tyrosine kinase inhibitor. Cancer Res 64:5355–5362PubMedCrossRefGoogle Scholar
  143. 143.
    Rich Jn, Reardon DA, Peery T, Dowell JM, Quinn JA, Penne KL et al (2004) Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 22:132–142Google Scholar
  144. 144.
    Prados MD, Lamborn KR, Chang S, Burton E, Butowski N, Malec M et al (2006) Phase I study of erlotinib HCL alone and combined with temozolamide in patients with stable or recurrent malignant glioma. Neuro Oncology 8:67–78PubMedCrossRefGoogle Scholar
  145. 145.
    Vogelbaum MA, Peereboom D, Stevens G, Barnett G, Brewer C (2004) Phase II rial of EGFR tyrosien kines inhibitor erlotinib for single agent therapy of recurrent glioblastoma multiforme: interim results. Proc Am Soc Oncol 22:1558aGoogle Scholar
  146. 146.
    Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan Zhu S Dia EQ et al (2005). Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2202PubMedCrossRefGoogle Scholar
  147. 147.
    Lassman AB, Abrey LE, Gilbert MR (2006) Response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 354:525–526PubMedCrossRefGoogle Scholar
  148. 148.
    Giaccone G, Johnson DH, Manegold C et al (2002) A phase III clinical trial of ZD1839 (“Iressa”) in combination with gemcitabine and cisplatin in chemotherapy naïve patients with advanced non-small-cell lung cancer (INTACT 1). Ann Oncol 13(Suppl 5):2–3Google Scholar
  149. 149.
    Haas-Kogan DA, Prados MD, Tihan T, Eberhard DA, Jelluma N, Arvold ND et al (2005) Epidermal growth factor receptor, protein kinase B/Akt and glioma response to erlotinib. J Natl Cancer Inst 97:880–887PubMedCrossRefGoogle Scholar
  150. 150.
    Torrance CJ, Jackson PE, Montgomery E et al (2000) Combinatorial chemoprevention of intestinal neoplasia. Nat Med 6:1024–1028PubMedCrossRefGoogle Scholar
  151. 151.
    Eller JL, Longo SL, Kyle MM, Bassano D, Hicklin D, Canute G (2005) Anti-epidermal growth factor receptor monoclonal antibody cetuximab augments radiation effects in glioblastoma multiforme in vitro and in vivo. Neurosurgery 56:155–162PubMedGoogle Scholar
  152. 152.
    Combs SE, Heeger S, Haselmann R, Edler L, Debus J, Schulz-Ertner D (2006). Treatment of primary glioblastoma multiforme with cetuximab, radiotherapy and temozolamide (GERT) – phase I/II trial: study protocol. BMC Cancer 6: 133–140PubMedCrossRefGoogle Scholar
  153. 153.
    Haluska P, Dy GK, Adjei AA (2002) Farnesyl transferase inhibitors as anticancer agents. European J Cancer 38:1685–1700CrossRefGoogle Scholar
  154. 154.
    Appels NM, Beijnen JH, Schellens JH (2005) Development of farnesyl transferase inhibitors: a review. Oncologist 10:565–578PubMedCrossRefGoogle Scholar
  155. 155.
    Johnson MD, Woodard A, Okediji EJ et al (2002) Lovastatin is a potent inhibitor of meningioma cell proliferation: evidence for inhibition of a mitogen associated protein kinase. J Neuro-Oncol 56:133–142CrossRefGoogle Scholar
  156. 156.
    Kohno M, Pouyssegur J (2006) Targeting the ERK signaling pathway in cancer therapy. Ann Med 38:200–211PubMedCrossRefGoogle Scholar
  157. 157.
    Choe G, Horvath S, Cloughesy TF, Crosby K, Seligson D, Palotie A, Inge L, Smith BL, Sawyers CL, Mischel PS (2003) Analysis of the phosphatidylinositol 3-kinase signaling pathway in glioblastoma patients in vivo. Caner Res 63:2742–2746Google Scholar
  158. 158.
    Nakamura JL, Karlsson A, Arvold ND, Gottschalk Ar, Pieper RO, Stokoe D, Haas-Kogan DA (2005) PKB/Akt mediates radiosensitization by signaling inhibitor LY294002 in human malignant gliomas. J Neuroncol 71:215–222CrossRefGoogle Scholar
  159. 159.
    Witzig TE, Kaufmann SH (2006) Inhibition of the phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway in hematologic malignancies. Curr Treat Options Oncol 7:285–294PubMedCrossRefGoogle Scholar
  160. 160.
    Ragel BT, Jensen RL, Gillespie DL, Prescott SM Couldwell WT (2005) Ubiquitous expression of cyclooxygenase-2 in meningiomas and decrease in cell growth following in vitro treatment with the inhibitor celecoxib: potential therapeutic implications. J Neurosurg 103:508–517PubMedGoogle Scholar
  161. 161.
    Dannenberg AJ, Lippman SM, Mann JR, Subbaramaiah K, Dubois RN (2005) Cyclooxygenase-2 and epidermal growth factor receptor: Pharmacologic targets for chemoprevention. J Clin Oncol 23:254–266PubMedCrossRefGoogle Scholar
  162. 162.
    Paek SH, Kim CY, Kim YY, Park IA, Kim MS, Kim DG, Jung HW (2002) Correlation of clinical and biological parameters with peritumoral edema in meningiomas. J Neurooncol 60:235–45PubMedCrossRefGoogle Scholar
  163. 163.
    Singer CF, Hudelist G, Lamm W et al (2004) Expression of tyrosine kinases in human malignancies as potential targets for kinase specific malignancies. Cancer 11:861–869Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mahlon D. Johnson
    • 1
  • Burak Sade
    • 2
  • Michael T. Milano
    • 3
  • Joung H. Lee
    • 2
  • Steven A. Toms
    • 2
  1. 1.Department of Pathology and Laboratory Medicine, Division of NeuropathologyUniversity of Rochester Medical CenterRochesterUSA
  2. 2.Brain Tumor and Neuro-oncology CenterNeurological Institute, Cleveland ClinicClevelandUSA
  3. 3.Department of Radiation OncologyUniversity of Rochester, Medical CenterRochesterUSA

Personalised recommendations