Skip to main content
Log in

The p53/p21 DNA damage-signaling pathway is defective in most meningioma cells

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Although meningiomas represent the most common class of tumors of the central nervous system, the molecular events underlying their genesis and development are still not well defined. In the present study we have used the immuno-blotting technique to study the expression level of the tumor suppressor proteins p53, p21 and PTEN in primary meningioma cells. We have also studied the induction of p21 and p53 in response to both UV light and γ-rays. We present evidence that the p53/p21-dependent γ-ray signaling pathway is defective in 5 out of 8 (62%) of these cells. Furthermore, we have shown that the tumor suppressor p21, p53 and PTEN proteins are differently expressed in these cells, with up to 40-folds difference between the lowest and the highest levels of each protein. These results suggest that the tumor suppressors p53/p21 signaling pathway and PTEN play important roles in the development of benign meningiomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Drummond KJ, Zhu JJ, Black PM (2004) Meningiomas: updating basic science, management, and outcome. Neurologist 10:113–130

    Article  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  3. Weber RG, Bostrom J, Wolter M, Baudis M, Collins VP, Reifenberger G, Lichter P (1997) Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 94:14719–14724

    Article  PubMed  CAS  Google Scholar 

  4. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  PubMed  CAS  Google Scholar 

  5. Wang JL, Zhang ZJ, Hartman M, Smits A, Westermark B, Muhr C, Nister M (1995) Detection of TP53 gene mutation in human meningiomas: a study using immunohistochemistry, polymerase chain reaction/single-strand conformation polymorphism and DNA sequencing techniques on paraffin-embedded samples. Int J Cancer 64:223–228

    Article  PubMed  CAS  Google Scholar 

  6. Verheijen FM, Sprong M, Kloosterman JM, Blaauw G, Thijssen JH, Blankenstein MA (2002) TP53 mutations in human meningiomas. Int J Biol Markers 17:42–48

    PubMed  CAS  Google Scholar 

  7. Joachim T, Ram Z, Rappaport ZH, Simon M, Schramm J, Wiestler OD, von Deimling A (2001) Comparative analysis of the NF2, TP53, PTEN, KRAS, NRAS and HRAS genes in sporadic and radiation-induced human meningiomas. Int J Cancer 94:218–221

    Article  PubMed  CAS  Google Scholar 

  8. Hofseth LJ, Hussain SP, Harris CC (2004) p53: 25 years after its discovery. Trends Pharmacol Sci 25:177–181

    Article  PubMed  CAS  Google Scholar 

  9. Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168

    Article  PubMed  CAS  Google Scholar 

  10. Yang J, Yu Y, Hamrick HE, Duerksen-Hughes PJ (2003) ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses. Carcinogenesis 24:1571–1580

    Article  PubMed  CAS  Google Scholar 

  11. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    Article  PubMed  CAS  Google Scholar 

  12. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805

    PubMed  CAS  Google Scholar 

  13. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299

    Article  PubMed  CAS  Google Scholar 

  14. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin- dependent kinases. Cell 75:805–816

    Article  PubMed  CAS  Google Scholar 

  15. El-Deiry WS (1998) Regulation of p53 downstream genes. Semin Cancer Biol 8:345–357

    Article  PubMed  CAS  Google Scholar 

  16. El-Deiry WS, Harper JW, Pm OC, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, et al. (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54:1169–1174

    PubMed  CAS  Google Scholar 

  17. Haapajarvi T, Kivinen L, Pitkanen K, Laiho M (1995) Cell cycle dependent effects of u.v.-radiation on p53 expression and retinoblastoma protein phosphorylation. Oncogene 11:151–159

    PubMed  CAS  Google Scholar 

  18. Loignon M, Fetni R, Gordon AJ, Drobetsky EA (1997) A p53-independent pathway for induction of p21waf1cip1 and concomitant G1 arrest in UV-irradiated human skin fibroblasts. Cancer Res 57:3390–3394

    PubMed  CAS  Google Scholar 

  19. Haapajarvi T, Kivinen L, Heiskanen A, des Bordes C, Datto MB, Wang XF, Laiho M (1999) UV radiation is a transcriptional inducer of p21(Cip1/Waf1) cyclin-kinase inhibitor in a p53-independent manner. Exp Cell Res 248:272–279

    Article  PubMed  CAS  Google Scholar 

  20. Loignon M, Drobetsky EA (2002) The initiation of UV-induced G(1) arrest in human cells is independent of the p53/p21/pRb pathway but can be attenuated through expression of the HPV E7 oncoprotein. Carcinogenesis 23:35–45

    Article  PubMed  CAS  Google Scholar 

  21. Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196

    Article  PubMed  CAS  Google Scholar 

  22. Meyer KM, Hess SM, Tlsty TD, Leadon SA (1999) Human mammary epithelial cells exhibit a differential p53-mediated response following exposure to ionizing radiation or UV light. Oncogene 18:5795–5805

    Article  PubMed  CAS  Google Scholar 

  23. Theaker JM, Gatter KC, Esiri MM, Fleming KA (1986) Epithelial membrane antigen and cytokeratin expression by meningiomas: an immunohistological study. J Clin Pathol 39:435–439

    Article  PubMed  CAS  Google Scholar 

  24. Shiohara M, El-Deiry WS, Wada M, Nakamaki T, Takeuchi S, Yang R, Chen DL, Vogelstein B, Koeffler HP (1994) Absence of WAF1 mutations in a variety of human malignancies. Blood 84:3781–3784

    PubMed  CAS  Google Scholar 

  25. Gartel AL, Radhakrishnan SK (2005) Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res 65:3980–3985

    Article  PubMed  CAS  Google Scholar 

  26. LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E (1997) New functional activities for the p21 family of CDK inhibitors. Genes Dev 11:847–862

    Article  PubMed  CAS  Google Scholar 

  27. Roninson IB (2002) Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett 179:1–14

    Article  PubMed  CAS  Google Scholar 

  28. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    Article  PubMed  CAS  Google Scholar 

  29. Peters N, Wellenreuther R, Rollbrocker B, Hayashi Y, Meyer-Puttlitz B, Duerr EM, Lenartz D, Marsh DJ, Schramm J, Wiestler OD, Parsons R, Eng C, von Deimling A (1998) Analysis of the PTEN gene in human meningiomas. Neuropathol Appl Neurobiol 24:3–8

    Article  PubMed  CAS  Google Scholar 

  30. Bostrom J, Cobbers JM, Wolter M, Tabatabai G, Weber RG, Lichter P, Collins VP, Reifenberger G (1998) Mutation of the PTEN (MMAC1) tumor suppressor gene in a subset of glioblastomas but not in meningiomas with loss of chromosome arm 10q. Cancer Res 58:29–33

    PubMed  CAS  Google Scholar 

  31. Newton HB (2004) Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, SHH/PTCH and angiogenesis. Expert Rev Anticancer Ther 4:105–128

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are very thankful to the Research Center administration and the Office of Research Affairs (ORA) at the KFSH&RC for their continuous support. This work was performed under the RAC proposal # 2050 015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelilah Aboussekhra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Khalaf, H.H., Lach, B., Allam, A. et al. The p53/p21 DNA damage-signaling pathway is defective in most meningioma cells . J Neurooncol 83, 9–15 (2007). https://doi.org/10.1007/s11060-006-9301-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-006-9301-3

Keywords

Navigation