Skip to main content
Log in

Acute morphological sequelae of photodynamic therapy with 5-aminolevulinic acid in the C6 spheroid model

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Objective

Aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) may represent a treatment option for malignant brain tumors. We used a three-dimensional cell culture system, the C6 glioma spheroid model, to study acute effects of PDT and how they might be influenced by treatment conditions.

Methods

Spheroids were incubated for 4 h in 100 μg/ml ALA in 5% CO2 in room air or 95% O2 with subsequent irradiation using a diode laser (λ = 635 nm, 40 mW/cm2, total fluence 25 J/cm2). Control groups were “laser only”, “ALA only”, and “no drug no light”. Annexin V-FITC, a marker used for detection of apoptosis, propidium iodide (PI), a marker for necrotic cells and H 33342, a chromatin stain, were used for morphological characterization of PDT effects by confocal laser scanning and fluorescence microscopy. Hematoxylin–eosin staining and TdT-FragEL (TUNEL) assay were used on cryosections. Growth kinetics were followed for 8 days after PDT.

Results

PDT after incubation in 5% CO2 provided incomplete cell death and growth delay in spheroids of >350 μm diameter. However, complete cell death and growth arrest occurred in smaller spheroids (<350 μm). Incubation in 95% O2 with subsequent PDT resulted in complete cell death and growth arrest regardless of spheroid size. In incompletely damaged spheroids viable cells were restricted to spheroid centers. The rate of cell death in all control groups was negligible. Cell death was accompanied by annexin/PI costaining, but there was also evidence for annexin V-FITC staining without PI uptake.

Conclusions

PDT of experimental glioma results in rapid and significant cell death that could be verified as acute necrosis immediately after irradiation. This effect depended on O2 concentration and spheroid size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bell HS, Whittle IR, Walker M, Leaver HA, Wharton SB (2001) The development of necrosis and apoptosis in glioma: experimental findings using spheroid culture systems. Neuropathol Appl Neurobiol 27:291–304

    Article  PubMed  CAS  Google Scholar 

  2. Betz AL, Iannotti F, Hoff JT (1989) Brain edema: a classification based on blood–brain barrier integrity. Cerebrovasc Brain Metab Rev 1:133–154

    PubMed  CAS  Google Scholar 

  3. Bigelow CE,Mitra S, Knuechel R, Forster TH (2001) ALA- and ALA-Hexylester-induced protoporphyrin IX fluorescence and distribution in multicell tumor. Br J Cancer 85:727–734

    Article  PubMed  CAS  Google Scholar 

  4. Brandes AA (2003) State-of-the-art treatment of high-grade brain tumors. Semin Oncol 30(Suppl 19):4–9

    Article  PubMed  Google Scholar 

  5. Brock CS, Bower M (1997) Current perspectives in gliomas. Med Oncol 14:103–120

    Article  PubMed  CAS  Google Scholar 

  6. Cheung-Hoi Y, Wong HK, Yung HW, Lau LT (2001) Ischemia-induced apoptosis in primary cultures of astrocytes. Glia 35:121–130

    Article  Google Scholar 

  7. Dubessy C, Merlin JM, Marchal C, Guillemin F (2000) Spheroids in radiobiology and photodynamic therapy. Crit Rev Oncol Hematol 36:179–192

    PubMed  CAS  Google Scholar 

  8. Eleouet S, Rousset N, Carre J, Bourre L, Vonarx V, Lajat Y, Beijersbergen van Henegouwen GM, Patrice T (2000) In vitro fluorescence, toxicity and phototoxicity induced by delta-aminolevulinic acid (ALA) or ALA-esters. Photochem Photobiol 71:447–454

    Article  PubMed  CAS  Google Scholar 

  9. van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–9

    Article  PubMed  Google Scholar 

  10. Foster TH, Hartley DF, Nichols MG, Hilf R (1993) Fluence rate effects in photodynamic therapy of multicell tumor spheroids. Cancer Res 53:1249–1254

    PubMed  CAS  Google Scholar 

  11. Friesen SA, Hjortland GO, Madsen SJ, Hirschberg H, Engebraten O, Nesland JM, Peng Q (2002) 5-Aminolevulinic acid-based photodynamic detection and therapy of brain tumors (Review). Int J Oncol 21:577–582

    PubMed  CAS  Google Scholar 

  12. Georgakoudi I, Nichols MG, Foster TH (1999) The mechanism of Photofrin photobleaching and its consequences for photodynamic dosimetry. Photochem Photobiol 65:135–144

    Google Scholar 

  13. Graham SH, Chen J (2001) Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab 21:99–109

    Article  PubMed  CAS  Google Scholar 

  14. Hebeda KM, Saarnak AE, Olivo M, Sterenborg HJ, Wolbers JG et al (1998) 5-aminolevulinic acid induced endogenous porphyrin fluorescence in 9L and C6 brain tumours and in the normal rat brain. Acta Neurochir 140:503–512

    Article  CAS  Google Scholar 

  15. Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55:777–779

    Google Scholar 

  16. Hirschberg H, Sun CH, Tromberg BJ, Yeh AT, Madsen SJ (2004) Enhanced cytotoxic effects of 5-aminolevulinic acid mediated photodynamic therapy by concurrent hyperthermia in glioma spheroids. J Neurooncol 70:289–299

    Article  PubMed  Google Scholar 

  17. Ito S, Rachinger W, Stepp H, Reulen HJ, Stummer W (2005) Oedema formation in experimental photo-irradiation therapy of brain tumours using 5-ALA. Acta Neurochir (Wien) 147:57–65

    Article  CAS  Google Scholar 

  18. Knappe A, Beyer W, Riesenberg R, Schneede P, Sroka R, Unsold E, Valet G (1995) Computer-controlled laser irradiation unit for studies of light-induced processes in cell cultures. Biomed Tech (Berl) 40:272–275

    Article  CAS  Google Scholar 

  19. Kostron H, Obwegeser A, Jakober R (1996) Photodynamic therapy in neurosurgery: a review. J Photochem Photobiol B, Biol 36:157–168

    Article  PubMed  CAS  Google Scholar 

  20. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:289–298

    Article  CAS  Google Scholar 

  21. Macecek J, Kolarova H, Psotova J, Bajgar R, Huf M, Nevrelova P, Tomeeka M, Mosinger J (2004) Assessment of cellular damage by comet assay after photodynamic therapy in vitro. Acta Medica (Hradec Kralove) 47:327–329

    CAS  Google Scholar 

  22. Madsen SJ, Sun CH, Tromberg BJ, Hirschberg H (2001) Development of a novel indwelling balloon applicator for optimizing light delivery in photodynamic therapy. Lasers Surg Med 29:406–412

    Article  PubMed  CAS  Google Scholar 

  23. Madsen SJ, Sun CH, Tromberg BJ, Wallace VP, Hirschberg H (2000) Photodynamic therapy of human glioma spheroids using 5-aminolevulinic acid. Photochem Photobiol 72:128–134

    Article  PubMed  CAS  Google Scholar 

  24. Madsen SJ, Sun CH, Tromberg BJ, Hirschberg H (2003) Repetitive 5-aminolevulinic acid-mediated photodynamic therapy on human glioma spheroids. J Neurooncol 62:243–250

    Article  PubMed  Google Scholar 

  25. Madsen SJ, Sun CH, Tromberg BJ, Yeh AT, Sanchez R, Hirschberg H (2002) Effects of combined photodynamic therapy and ionizing radiation on human glioma spheroids. Photochem Photobiol 76:411–416

    Article  PubMed  CAS  Google Scholar 

  26. Mahaley MS Jr, Mettlin C, Natarajan N, Laws ER Jr, Peace BB (1998) National survey of patterns of care for brain-tumor patients. J Neurosurg 71:826–836

    Google Scholar 

  27. Muller PJ, Wilson BC (1995) Photodynamic therapy for recurrent supratentorial gliomas. Semin Surg Oncol 11:346–543

    PubMed  CAS  Google Scholar 

  28. Mueller-Klieser W, Bourrat B, Gabbert H, Sutherland RM (1985) Changes in O2 consumption of multicellular spheroids during development of necrosis. Adv Exp Med Biol 191:775–784

    PubMed  CAS  Google Scholar 

  29. Nichols MG, Foster TH (1994) Oxygen diffusion and reaction-kinetics in the photodynamic therapy of multicell tumor spheroids. Phys Med Biol 39:2161–2181

    Article  PubMed  CAS  Google Scholar 

  30. Nirmala C, Rao JS, Ruifrok AC, Langford LA, Obeyesekere M (2001) Growth characteristics of glioblastoma spheroids. Int J Oncol 19:1109–1115

    PubMed  CAS  Google Scholar 

  31. Oleinick NL, Morris RL, Belichenko T (2002) The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci 1:1–21

    Article  PubMed  CAS  Google Scholar 

  32. Olzowy B, Hundt CS, Stocker S, Bise K, Reulen HJ, Stummer W (2002) Photoirradiation therapy of experimental malignant glioma with 5-aminolevulinic acid. J Neurosurg 97:970–976

    Article  PubMed  CAS  Google Scholar 

  33. Origitano TC, Caron MJ, Reichman OH (1994) Photodynamic therapy for intracranial neoplasms. Literature review and institutional experience. Mol Chem Neuropathol 21:337–352

    Article  PubMed  CAS  Google Scholar 

  34. Plaetzer K, Kiesslich T, Krammer B, Hammerl P (2002) Characterization of the cell death modes and the associated changes in cellular energy supply in response to AlPcS4-PDT. Photochem Photobiol Sci 1:172–177

    Article  PubMed  CAS  Google Scholar 

  35. Popovic EA, Kaye AH, Hill JS (1996) Photodynamic therapy of brain tumors. J Clin Laser Med Surg 14:251–261

    PubMed  CAS  Google Scholar 

  36. Schellenberger EA, Bogdanov A Jr, Petrovsky A, Ntziachristos V, Weissleder R, Josephson L (2003) Optical imaging of apoptosis as a biomarker of tumor response to chemotherapy. Neoplasia 5:187–192

    PubMed  CAS  Google Scholar 

  37. Stummer W, Gotz C, Hassan A, Heimann A, Kempski O (1993) Kinetics of Photofrin II in perifocal brain edema. Neurosurgery 33:1075–1081

    PubMed  CAS  Google Scholar 

  38. Stummer W, Hassan A, Kempski O et al (1996) Photodynamic therapy within edematous brain tissue: considerations on sensitizer dose and time point of laser irradiation. J Photochem Photobiol B, Biol 36:179–181

    Article  PubMed  CAS  Google Scholar 

  39. Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013

    Article  PubMed  CAS  Google Scholar 

  40. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, ALA-glioma study group (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Onc 7(5):392–401

    Article  CAS  Google Scholar 

  41. Stummer W, Stocker S, Novotny A, Heimann A, Sauer O, Kempski O, Plesnila N, Wietzorrek J, Reulen HJ (1998) In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid. J Photochem Photobiol B, Biol 45:160–169

    Article  PubMed  CAS  Google Scholar 

  42. Stummer W, Stocker S, Wagner S, Stepp H, Fritsch C, Goetz C, Goetz AE, Kiefmann R, Reulen HJ (1998) Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 42:518–525

    Article  PubMed  CAS  Google Scholar 

  43. Tsai JC, Hsiao YY, Teng LJ, Chen CT, Kao MC (1999) Comparative study on the ALA photodynamic effects of human glioma and meningioma cells. Lasers Surg Med 24:296–305

    Article  PubMed  CAS  Google Scholar 

  44. Uehlinger P, Zellweger M, Wagnieres G, Juillerat-Jeanneret L, van den Bergh H, Lange N (2000) 5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells. J Photochem Photobiol B, Biol 54:72–80

    Article  PubMed  CAS  Google Scholar 

  45. Wallner KE, Galicich JH, Krol G, Arbit E, Malkin MG (1989) Patterns of failure following treatment for glioblastoma-multiforme and anaplastic astocytoma. Int J Rad Oncol Biol Phys 16:1405–1409

    CAS  Google Scholar 

  46. Webber J, Kessel D, Fromm D (1997) Side effects and photosensitization of human tissues after aminolevulinic acid. J Surg Res 68(1):31–37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Deutsche Krebshilfe e.V. Projekt-Nr. 70–2864. We gratefully acknowledge advice from Jorg Cristian Tonn, Prof., MD, Department of Neurosurgery, Herbert Stepp, Ph.D., Tobias Beck, Dipl. phys., Laser Research Laboratory, Ludwig-Maximilians University, Munich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Stummer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelenkov, P., Baumgartner, R., Bise, K. et al. Acute morphological sequelae of photodynamic therapy with 5-aminolevulinic acid in the C6 spheroid model. J Neurooncol 82, 49–60 (2007). https://doi.org/10.1007/s11060-006-9252-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-006-9252-8

Keywords

Navigation