Skip to main content

Advertisement

Log in

Combined low dose ionizing radiation and green tea-derived epigallocatechin-3-gallate treatment induces human brain endothelial cells death

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The microvasculature of brain tumors has been proposed as the primary target for ionizing radiation (IR)-induced apoptosis. However, the contribution of low dose IR-induced non-apoptotic cell death pathways has not been investigated. This study aimed to characterize the effect of IR on human brain microvascular endothelial cells (HBMEC) and to assess the combined effect of epigallocatechin-3-gallate (EGCg), a green tea-derived anti-angiogenic molecule. HBMEC were treated with EGCg, irradiated with a sublethal (≤10 Gy) single dose. Cell survival was assessed 48 h later by nuclear cell counting and Trypan blue exclusion methods. Cell cycle distribution and DNA fragmentation were evaluated by flow cytometry (FC), cell death was assessed by fluorimetric caspase-3 activity, FC and immunoblotting for pro-apoptotic proteins. While low IR doses alone reduced cell survival by 30%, IR treatment was found more effective in EGCg pretreated-cells reaching 70% cell death. Analysis of cell cycle revealed that IR-induced cell accumulation in G2-phase. Expression of cyclin-dependent kinase inhibitors p21(CIP/Waf1) and p27(Kip) were increased by EGCg and IR. Although random DNA fragmentation increased by approximately 40% following combined EGCg/IR treatments, the synergistic reduction of cell survival was not related to increased pro-apoptotic caspase-3, caspase-9 and cytochrome C proteins. Cell necrosis increased 5-fold following combined EGCg/IR treatments while no changes in early or late apoptosis were observed. Our results suggest that the synergistic effects of combined EGCg/IR treatments may be related to necrosis, a non-apoptotic cell death pathway. Strategies sensitizing brain tumor-derived EC to IR may enhance the efficacy of radiotherapy and EGCg may represent such a potential agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EC:

endothelial cells

EGCg:

epigallocatechin-3-gallate

GBM:

glioblastoma multiforme

HBMEC:

human brain microvascular endothelial cells

HUVEC:

human umbilical vein endothelial cells

IR:

ionizing radiation

VEGF:

vascular endothelial growth factor

References

  1. Laperriere N, Zuraw L, Cairncross G (2002) Cancer Care Ontario Practice Guidelines Initiative Neuro-Oncology Disease Site Group: radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother Oncol 64:259–273

    Article  PubMed  Google Scholar 

  2. Davis FG, McCarthy BJ, Freels S, Kupelian V, Bondy ML (1999) The conditional probability of survival of patients with primary malignant brain tumors: surveillance, epidemiology, and end results (SEER) data. Cancer 85:485–491

    Article  PubMed  CAS  Google Scholar 

  3. Glioma Meta-analysis Trialists (GMT) Group (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 359:1011–1018

    Article  Google Scholar 

  4. Brem S, Cotran R, Folkman J (1972) Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 48:347–356

    PubMed  CAS  Google Scholar 

  5. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Eng J Med 285:1182–1186

    Article  CAS  Google Scholar 

  6. Chaudhry IH, O'Donovan DG, Brenchley PE, Reid H, Roberts IS (2001) Vascular endothelial growth factor expression correlates with tumour grade and vascularity in gliomas. Histopathology 39:409–415

    Article  PubMed  CAS  Google Scholar 

  7. Brem S (2003) Angiogenesis and brain tumors. In: Youmans Neurological Surgery, 5th edn. Saunders, Philadelphia (PA), pp 771–789

  8. McLaughlin N, Annabi B, Bouzeghrane M, Temme A, Bahary JP, Moumdjian R, Beliveau R (2006) The survivin-mediated radioresistant phenotype of glioblastomas is regulated by RhoA and inhibited by the green tea polyphenol (−) epigallocatechin-3-gallate. Brain Research 1071:1–9

    Article  PubMed  CAS  Google Scholar 

  9. Hendry JH, West CM (1997) Apoptosis and mitotic cell death: their relative contributions to normal tissue and tumor radiation response. Int J Radiat Biol 71:709–719

    Article  PubMed  CAS  Google Scholar 

  10. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyder D, Rafii S, Haimovitz-friedman A, Fuks Z, Kolesnick R (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155–1159

    Article  PubMed  CAS  Google Scholar 

  11. Denekamp J (1982) Endothelial cell proliferation as a novel approach to targeting tumour therapy. Br J Cancer 45:136–139

    Google Scholar 

  12. Bolus NE (2001) Basic review of radiation biology and terminology. J Nucl Med Technol 29:67–73

    PubMed  CAS  Google Scholar 

  13. Coleman CN (1988) Hypoxia in tumors: a paradigm for the approach to biochemical and physiologic heterogeneity. J Nat Cancer Inst 80:310–317

    PubMed  CAS  Google Scholar 

  14. Maj JG, Paris F, Haimovitz-Friedman A, Venkatraman E, Kolesnick R, Fuks Z (2003) Microvascular function regulates intestinal crypt response to radiation. Cancer Res 63:4338–4441

    PubMed  CAS  Google Scholar 

  15. Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297

    Article  PubMed  CAS  Google Scholar 

  16. Pena LA, Fuks Z, Kolesnick RN (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res 60:321–327

    PubMed  CAS  Google Scholar 

  17. Fuks Z. Persaud RS, Alfieri A, McLoughlin M, Ehleiter D, Schwartz JP,Seddon AP, Cordon-Cardo C, Haimovitz-Friedman A (1994) Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res 54:2582–2590

    PubMed  Google Scholar 

  18. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O'Reilly MS, Folkman J (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886

    PubMed  CAS  Google Scholar 

  19. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669

    Article  PubMed  CAS  Google Scholar 

  20. Stupp R, Mason WP, van der Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials (2005) Group Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  21. Schuuring J, Bussink J, Bernsen HJ, Peeters W, van Der Kogel AJ (2005) Irradiation combined with SU5416: microvascular changes and growth delay in a human xenograft glioblastoma tumor line. Int J Radiat Oncol Biol Phys 61:529–534

    Article  PubMed  CAS  Google Scholar 

  22. Chendil D, Ranga RS, Meigooni D, Sathishkumar S, Ahmed MM (2004) Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene 23:1599–1607

    Article  PubMed  CAS  Google Scholar 

  23. Baatout S, Derradji H, Jacquet P, Mergeay M (2005) Increased radiation sensitivity of an eosinophilic cell line following treatment with epigallocatechin-gallate, resveratrol and curcuma. Int J Mol Med 15:337–352

    PubMed  CAS  Google Scholar 

  24. Baatout S, Jacquet P, Derradji H, Ooms D, Michaux A, Mergeay M (2004) Study of the combined effect of X-irradiation and epigallocatechin-gallate (a tea component) on the growth inhibition and induction of apoptosis in human cancer cell lines. Oncol Rep 12:159–167

    PubMed  CAS  Google Scholar 

  25. Kim CH, Moon SK (2005) Epigallocatechin-3-gallate causes the p21/WAF1-mediated G(1)-phase arrest of cell cycle and inhibits matrix metalloproteinase-9 expression in TNF-alpha-induced vascular smooth muscle cells. Arch Biochem Biophys 435:264–272

    Article  PubMed  CAS  Google Scholar 

  26. Gupta S, Hussain T, Mukhtar H (2003) Molecular pathway for (−)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem Biophys 410:177–185

    Article  PubMed  CAS  Google Scholar 

  27. Ahmad N, Cheng P, Mukhtar H (2000) Cell cycle dysregulation by green tea polyphenol epigallocatechin-3-gallate. Biochem Biophys Res Commun 275:328–334

    Article  PubMed  CAS  Google Scholar 

  28. Yokoyama S, Hirano H, Wakimaru N, Sarker KP, Kuratsu J (2001) Inhibitory effect of epigallocatechin-gallate on brain tumor cell lines in vitro. Neuro-oncol 3:22–28

    Article  PubMed  CAS  Google Scholar 

  29. Fassina G, Vene R, Morini M, Minghelli S, Benelli R, Noonan DM, Albini A (2004) Mechanisms of inhibition of tumor angiogenesis and vascular tumor growth by epigallocatechin-3-gallate. Clin Cancer Res 10:4865–4873

    Article  PubMed  CAS  Google Scholar 

  30. Annabi B, Bouzeghrane M, Moumdjian R, Moghrabi A, Beliveau R (2005) Probing the infiltrating character of brain tumors: inhibition of RhoA/ROK-mediated CD44 cell surface shedding from glioma cells by the green tea catechin EGCg. J Neurochem 94:906–916

    Article  PubMed  CAS  Google Scholar 

  31. Pilorget A, Berthet V, Luis J, Moghrabi A, Annabi B, Beliveau R (2003) Medulloblastoma cell invasion is inhibited by green tea (−)epigallocatechin-3-gallate. J Cell Biochem 90:745–755

    Article  PubMed  CAS  Google Scholar 

  32. Kojima-Yuasa A, Hua JJ, Kennedy DO, Matsui-Yuasa I (2003) Green tea extract inhibits angiogenesis of human umbilical vein endothelial cells through reduction of expression of VEGF receptors. Life Sci 73:1299–1313

    Article  PubMed  CAS  Google Scholar 

  33. Lamy S, Gingras D, Béliveau R (2002) Green tea catechins inhibit vascular endothelial growth factor receptor phosphorylation. Cancer Res 62:381–385

    PubMed  CAS  Google Scholar 

  34. Annabi B, Lee YT, Martel C, Pilorget A, Bahary JP, Beliveau R (2003) Radiation induced-tubulogenesis in endothelial cells is antagonized by the antiangiogenic properties of green tea polyphenol (−)epigallocatechin-3-gallate. Cancer Biol Ther 2:642–649

    PubMed  CAS  Google Scholar 

  35. Stins MF, Gilles F, Kim KS (1997) Selective expression of adhesion molecules on human brain microvascular endothelial cells. J Neuroimmunol 76:81–90

    Article  PubMed  CAS  Google Scholar 

  36. Greiffenberg L, Goebel W, Kim KS, Weiglein I, Bubert A, Engelbrecht F, Stins M, Kuhn M (1998) Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: InlB-dependent invasion, long-term intracellular growth, and spread from macrophages to endothelial cells. Infect Immun 66:5260–5267

    PubMed  CAS  Google Scholar 

  37. Kim HS, Cho HJ, Cho HJ, Park SJ, Park KW, Chae IH, Oh BH, Park YB, Lee MM (2004) The essential role of p21 in radiation-induced cell cycle arrest of vascular smooth muscle cell. J Mol Cell Cardiol 37:871–880

    Article  PubMed  CAS  Google Scholar 

  38. Maeda T, Chong MT, Espino RA, Chua PP, Cao JQ, Chomey EG, Luong L, Tron VA (2002) Role of p21(Waf-1) in regulating the G1 and G2/M checkpoints in ultraviolet-irradiated keratinocytes. J Invest Dermatol 119:513–521

    Article  PubMed  CAS  Google Scholar 

  39. Toyoshima H, Hunter T (1994) p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78:67–74

    Article  PubMed  CAS  Google Scholar 

  40. Ormerod MG (2002) Investigating the relationship between the cell cycle and apoptosis using flow cytometry. J Immunol Meth 265:73–80

    Article  CAS  Google Scholar 

  41. Tanaka T (1997) Effect of adenoviral-mediated thymidine kinase transduction and ganciclovir therapy on tumor-associated endothelial cells. Neurol Med Chir (Tokyo) 37:730–737

    Article  CAS  Google Scholar 

  42. Bian XW, Jiang XF, Chen JH, Bai JS, Dai C, Wang QL, Lu JY, Zhao W, Xin R, Liu MY, Shi JQ, Wang JM (2006) Increased angiogenic capabilities of endothelial cells from␣microvessels of malignant human gliomas. Int Immunopharmacol 6:90–99

    Article  PubMed  CAS  Google Scholar 

  43. Charalambous C, Hofman FM, Chen TC (2005) Functional and phenotypic differences between glioblastoma multiforme-derived and normal human brain endothelial cells. J Neurosurg 102:699–705

    Article  PubMed  Google Scholar 

  44. Bian C, Zhao K, Tong GX, Zhu YL, Chen P (2005) Immortalization of human umbilical vein endothelial cells with telomerase reverse transcriptase and simian virus 40 large T antigen. J Zhejiang Univ Sci B 6:631–636

    Article  PubMed  CAS  Google Scholar 

  45. Tentori L, Vergati M, Muzi A, Levati L, ruffini F, Forini O, Vernole P, Lacal PM, Graziani G (2005) Generation of an immortalized human endothelial cell line as a model of neovascular proliferating endothelial cells to assess chemosensitivity to anticancer drugs. Int J Oncol 27:525–535

    PubMed  CAS  Google Scholar 

  46. Zhao H, Spitz MR, Tomlinson GE, Zhang H, Minna JD, Wu X (2001) Gamma-radiation-induced G2 delay, apoptosis, and p53 response as potential susceptibility markers for lung cancer. Cancer Res 61:7819–7824

    PubMed  CAS  Google Scholar 

  47. Hwang A, Muschel RJ (1998) Radiation and the G2 phase of the cell cycle. Radiat Res 150(Suppl):52–59

    PubMed  Google Scholar 

  48. Schwartz D, Almog N, Peled A, Goldfinger N, Rotter V (1997) Role of wild-type p53 in the G2 phase: regulation of the gamma-irradiation-induced delay and DNA repair. Oncogene 15:2597–2607

    Google Scholar 

  49. Bernhard EJ, Maity A, Muschel RJ, McKenna WG (1995) Effects of ionizing radiation on cell cycle progression. A review. Radiat Environ Biophys 34:79–83

    Article  PubMed  CAS  Google Scholar 

  50. Liang YC, Lin-Shiau SY, Chen CF, Lin JK (1999) Inhibition of cyclin-dependent kinases 2 and 4 activities as well as induction of Cdk inhibitors p21 and p27 during growth arrest of human breast carcinoma cells by (−)-epigallocatechin-3-gallate. J Cell Biochem 75:1–12

    Article  PubMed  CAS  Google Scholar 

  51. Nakamura K, Arai D, Fukuchi K (2004) Identification of the region required for the antiapoptotic function of the cyclin kinase inhibitor, p21. Arch Biochem Biophys 431:47–54

    Article  PubMed  CAS  Google Scholar 

  52. Vanden Berghe T, Denecker G, Brouckaert G, Vadimovisch Krysko D, D'Herde K, Vandenabeele P (2004) More than one way to die: methods to determine TNF-induced apoptosis and necrosis. Meth Mol Med 98:101–126

    CAS  Google Scholar 

  53. Shimamura H, Sunamura M, Tsuchihara K, Egawa S, Takeda K, Matsuno S (2005) Irradiated pancreatic cancer cells undergo both apoptosis and necrosis, and could be phagocytized by dendritic cells. Eur Surg Res 37:228–234

    Article  PubMed  CAS  Google Scholar 

  54. Rainaldi G, Ferrante A, Indovina PL, Santini MT (2003) Induction of apoptosis or necrosis by ionizing radiation is dose-dependent in MG-63 osteosarcoma multicellular spheroids. Anticancer Res 23:2505–2518

    PubMed  CAS  Google Scholar 

  55. Nagata S, Obana A, Gohto Y, Nakajima S (2003) Necrotic and apoptotic cell death of human malignant melanoma cells following photodynamic therapy using an amphiphilic photosensitizer, ATX-S10(Na). Lasers Surg Med 33:64–70

    Article  PubMed  Google Scholar 

  56. Dynlacht JR, Earles M, Henthorn J, Roberts ZV, Howard EW, Seno JD, Sparling D, Story MD (1999) Degradation of the nuclear matrix is a common element during radiation-induced apoptosis and necrosis. Radiat Res 152:590–603

    PubMed  CAS  Google Scholar 

  57. Kurita H, Ostertag CB, Baumer B, Kopitzki K, Warnke PC (2000) Early effects of PRS-irradiation for 9L gliosarcoma: characterization of interphase cell death. Minim Invasive Neurosurg 43:197–200

    Article  PubMed  CAS  Google Scholar 

  58. Olive PL, Vikse CM, Vanderbyl S (1999) Increase in the fraction of necrotic, not apoptotic, cells in SiHa xenograft tumours shortly after irradiation. Radiother Oncol 50:113–119

    Article  PubMed  CAS  Google Scholar 

  59. Payne CM, Bjore CG Jr, Schultz DA (1992) Change in the frequency of apoptosis after low- and high-dose X-irradiation of human lymphocytes. J Leukoc Biol 52:433–440

    PubMed  CAS  Google Scholar 

  60. Quto b SS, Ng CE (2002) Comparison of apoptotic, necrotic and clonogenic cell death and inhibition of cell growth following camptothecin and X-radiation treatment in a human melanoma and a human fibroblast cell line. Cancer Chemother Pharmacol 49:167–175

    Article  PubMed  CAS  Google Scholar 

  61. Siemann DW, Horsman MR (2004) Targeting the tumor vasculature: a strategy to improve radiation therapy. Expert Rev Anticancer Ther 4:321–327

    Article  PubMed  CAS  Google Scholar 

  62. Yoo HG, Shin BA, Park JC, Kim HS, Kim WJ, Chay KO, Ahn BW, Park RK, Ellis LM, Jung YD (2002) Induction of apoptosis by the green tea flavonol (−)-epigallocatechin-3-gallate in human endothelial ECV 304 cells. Anticancer Res 22:3373–3378

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

B.A. holds a Canada Research Chair in Molecular Oncology from the Canadian Institutes of Health Research. R.B. holds an Institutional UQAM Research Chair in Cancer Prevention and Treatment and the Claude Bertrand Chair of Neurosurgery (CHUM). This research was supported by the NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Béliveau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLaughlin, N., Annabi, B., Lachambre, MP. et al. Combined low dose ionizing radiation and green tea-derived epigallocatechin-3-gallate treatment induces human brain endothelial cells death. J Neurooncol 80, 111–121 (2006). https://doi.org/10.1007/s11060-006-9171-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-006-9171-8

Keywords

Navigation