Skip to main content
Log in

Soil distribution of Phytophthora cinnamomi inoculum in oak afforestation depends on site characteristics rather than host availability

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

The decline and mortality of Quercus species worldwide are interpreted through the interactions of several factors in space and time. Among these factors, Phytophthora cinnamomi has been identified as a major biotic agent triggering mortality of Quercus ilex and Q. suber in the Mediterranean basin. However, there are few examples in the literature studying the interaction between P. cinnamomi and site environmental factors or assessing the effects of environmental drivers on the host-pathogen system. In this study, we examined how both characteristics and spatial distribution of soil and topography influence the effects of P. cinnamomi over the disease status of Q. ilex and Q. suber plantations using spatial analysis by distance indices and structural equation modelling. Results showed the high influence of soil (texture, nutrients, chemical composition and moisture) and topography (orientation, solar incidence and hydrology) over the pathogen availability, as well as lower mortality and defoliation of Q. suber, but more related to the colony forming units (cfu) distribution, compared with Q. ilex. These differences highlighted the convenience of mixed afforestation compared with monospecific ones, increasing afforestation resilience, and the importance of a precise scale for the characterization of soil and topography, preventing afforestation failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andivia E, Fernández M, Alejano R, Vázquez-Piqué J (2015) Tree patch distribution drives spatial heterogeneity of soil traits in cork oak woodlands. Ann For Sci 72:549–559. https://doi.org/10.1007/s13595-015-0475-8

    Article  Google Scholar 

  • Astigarraga J, Andivia E, Zavala MA, Gazol A, Cruz-Alonso V, Vicente‐Serrano SM, Ruiz‐Benito P (2020) Evidence of non‐stationary relationships between climate and forest responses: increased sensitivity to climate change in Iberian forests. Glob Change Biol 26:5063–5076. https://doi.org/10.1111/gcb.15198

    Article  Google Scholar 

  • Bárcena TG, Gundersen P, Vesterdal L (2014) Afforestation effects on SOC in former cropland: oak and spruce chronosequences resampled after 13 years. Glob Change Biol 20:2938–2952. https://doi.org/10.1111/gcb.12608

    Article  Google Scholar 

  • Bartier PM, Keller CP (1996) Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput Geosci 22:795–799. https://doi.org/10.1016/0098-3004(96)00021-0

    Article  CAS  Google Scholar 

  • Burgess TI, Scott JK, Mcdougall KL, Stukely MJC, Crane C, Dunstan WA, Brigg F, Andjic V, White D, Rudman T, Arentz F, Ota N, Hardy GEStJ (2017) Current and projected global distribution of Phytophthora cinnamomi, one of the world’s worst plant pathogens. Glob Change Biol 23:1661–1674. https://doi.org/10.1111/gcb.13492

    Article  Google Scholar 

  • Camilo-Alves CDSP, da Clara MIE, de Almeida Ribeiro NMC (2013) Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. Eur J For Res 132:411–432. https://doi.org/10.1007/s10342-013-0688-z

    Article  Google Scholar 

  • Cappai C, Kemanian AR, Lagomarsino A, Roggero PP, Lai R, Agnelli AE, Seddaiu G (2017) Small-scale spatial variation of soil organic matter pools generated by cork oak trees in Mediterranean agro-silvo-pastoral systems. In: Geoderma, 5th international symposium on soil organic matter 2015 304: 59–67. https://doi.org/10.1016/j.geoderma.2016.07.021

  • Cardillo E, Acedo A, Abad E (2018) Topographic effects on dispersal patterns of Phytophthora cinnamomi at a stand scale in a Spanish heathland. PLoS ONE. https://doi.org/10.1371/journal.pone.0195060

    Article  PubMed  PubMed Central  Google Scholar 

  • Colangelo M, Camarero JJ, Borghetti M, Gentilesca T, Oliva J, Redondo MA, Ripullone F (2018) Drought and Phytophthora are associated with the decline of oak species in Southern Italy. Front Plant Sci 9:1595. https://doi.org/10.3389/fpls.2018.01595

    Article  PubMed  PubMed Central  Google Scholar 

  • Crone M, McComb JA, O’Brien PA, Hardy GESJ (2013) Survival of Phytophthora cinnamomi as oospores, stromata, and thick-walled chlamydospores in roots of symptomatic and asymptomatic annual and herbaceous perennial plant species. Fungal Biology 117:112–123. https://doi.org/10.1016/j.funbio.2012.12.004

    Article  PubMed  Google Scholar 

  • Domínguez-Begines J, Ávila JM, García LV, Gómez-Aparicio L (2020) Soil-borne pathogens as determinants of regeneration patterns at community level in Mediterranean forests. New Phytol 227:588–600. https://doi.org/10.1111/nph.16467

    Article  PubMed  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Dray S, Blanchet G, Borcard D, Guenard G, Jombart T, Larocque G, Wagner HH (2017) Adespatial: Multivariate multiscale spatial analysis. R Package Vers 0:0–9

    Google Scholar 

  • Eck JL, Stump SM, Delavaux CS, Mangan SA, Comita LS (2019) Evidence of within-species specialization by soil microbes and the implications for plant community diversity. PNAS 116:7371–7376. https://doi.org/10.1073/pnas.1810767116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichhorn J, Roskams P, Ferretti M, Mues V, Szepesi A (2016) Visual assessment of crown condition and damaging agents. Manual Part IV. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE ICP Forests Programme Co-ordinating Centre, Eberswalde, Germany, p 49

    Google Scholar 

  • Eichhorn J, Roskams P, Potočić N, Timmermann V, Ferretti M, Mues V, Szepesi A, Durrant D, Seletković I, Schroeck HW, Nevalnien S, Bussotti F, García P, Wulff S (2017) Part IV: Visual assessment of crown condition and damaging agents. UNECE ICP forests programme co-ordinating centre. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Thünen Institute of Forest Ecosystems, Eberswalde, Germany, p 54

    Google Scholar 

  • Epskamp S, Epskamp MS (2019) Package ‘semPlot.’ R Package Version 1

  • Erwin DC, Ribeiro OK (1996) Phytophthora Diseases Worldwide. APS Press, Washington, United States

    Google Scholar 

  • Fernández-Habas J, Fernández-Rebollo P, Casado MR, García Moreno AM, Abellanas B (2019) Spatio-temporal analysis of oak decline process in open woodlands: a case study in SW Spain. J Environ Manage 248:109308. https://doi.org/10.1016/j.jenvman.2019.109308

    Article  PubMed  Google Scholar 

  • Ferretti M, Sánchez Peña G, Economou A, Beccu E, Canu G, Cocco S, Bussotti F, Cenni E, Cozzi A, Conceição Andrada M (1994) Especies forestales mediterráneas: guía para la evalución de las copas, CEC-UN/ECE. ed. LINNAEA ambiente Srl, Bruselas, Ginebra

    Google Scholar 

  • Finch WH, French BF (2015) Latent variable modeling with R. Routledge, New York. https://doi.org/10.4324/9781315869797

    Book  Google Scholar 

  • Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder MN, Nielsen A, Sibert J (2012) AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27:233–249. https://doi.org/10.1080/10556788.2011.597854

    Article  Google Scholar 

  • Gallardo A (2003) Effect of tree canopy on the spatial distribution of soil nutrients in a Mediterranean Dehesa. Pedobiologia 47:117–125. https://doi.org/10.1078/0031-4056-00175

    Article  CAS  Google Scholar 

  • Gentilesca T, Camarero JJ, Colangelo M, Nolè A, Ripullone F (2017) Drought-induced oak decline in the western Mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience. iForest Biogeosci For 10:796. https://doi.org/10.3832/ifor2317-010

    Article  Google Scholar 

  • Gil-Pelegrín E, Peguero-Pina JJ, Sancho-Knapik D (2017) Oaks physiological ecology. Exploring the functional diversity of genus Quercus L. Tree physiology. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-69099-5

    Chapter  Google Scholar 

  • Gómez-Aparicio L, Ibáñez B, Serrano MS, De Vita P, Ávila JM, Pérez-Ramos IM, García LV, Esperanza Sánchez M, Marañón T (2012) Spatial patterns of soil pathogens in declining Mediterranean forests: implications for tree species regeneration. New Phytol 194:1014–1024. https://doi.org/10.1111/j.1469-8137.2012.04108.x

    Article  PubMed  Google Scholar 

  • Gómez-Aparicio L, Domínguez-Begines J, Kardol P, Ávila JM, Ibáñez B, García LV (2017) Plant-soil feedbacks in declining forests: implications for species coexistence. Ecology 98:1908–1921. https://doi.org/10.1002/ecy.1864

    Article  PubMed  Google Scholar 

  • Gyeltshen J, Dunstan WA, Grigg AH, Burgess TI, Hardy StJ GE (2021) The influence of time, soil moisture and exogenous factors on the survival potential of oospores and chlamydospores of Phytophthora cinnamomi. Forest Pathol 51:e12637. https://doi.org/10.1111/efp.12637

    Article  Google Scholar 

  • Hardham AR (2005) Phytophthora cinnamomi. Mol Plant Pathol 6:589–604. https://doi.org/10.1111/j.1364-3703.2005.00308.x

    Article  CAS  PubMed  Google Scholar 

  • Hardham AR, Blackman LM (2018) Phytophthora cinnamomi. Mol Plant Pathol 19:260–285. https://doi.org/10.1111/mpp.12568

    Article  PubMed  Google Scholar 

  • Homet P, González M, Matías L, Godoy O, Pérez-Ramos IM, García LV, Gómez-Aparicio L (2019) Exploring interactive effects of climate change and exotic pathogens on Quercus suber performance: damage caused by Phytophthora cinnamomi varies across contrasting scenarios of soil moisture. Agric For Meteorol 276:107605. https://doi.org/10.1016/j.agrformet.2019.06.004

    Article  Google Scholar 

  • Jeffers SN (1986) Comparison of two media selective for Phytophthora and Pythium Species. Plant Dis 70:1038. https://doi.org/10.1094/PD-70-1038

    Article  Google Scholar 

  • Lara-Gómez MA, Navarro-Cerrillo RM, Ceacero CJ, Ruiz-Goméz FJ, Díaz-Hernández JL, Palacios Rodríguez G (2020) Use of aerial laser scanning to assess the effect on C sequestration of oak (Quercus ilex L. subsp. ballota [Desf.]Samp - Q. suber L.) afforestation on agricultural land. Geosciences 10:41. https://doi.org/10.3390/geosciences10020041

    Article  Google Scholar 

  • Junta de Andalucía M (1989) Mapa de suelos de Andalucía. CSIC.

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18. https://doi.org/10.18637/jss.v025.i01

    Article  Google Scholar 

  • León I, García J, Fernández M, Vázquez-Piqué J, Tapias R (2017) Differences in root growth of Quercus ilex and Quercus suber seedlings infected with Phytophthora cinnamomi. Silva Fennica. https://doi.org/10.14214/sf.6991

    Article  Google Scholar 

  • Manion PD, Lachance D (1992) Forest decline concepts. APS Press

    Google Scholar 

  • Moralejo E, García-Muñoz JA, Descals E (2009) Susceptibility of Iberian trees to Phytophthora ramorum and P. cinnamomi. Plant Pathol 58:271–283. https://doi.org/10.1111/j.1365-3059.2008.01956.x

    Article  Google Scholar 

  • Moreno G, Pulido FJ (2009) The functioning, management and persistence of dehesas. In: Rigueiro-Rodróguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe: current status and future prospects, advances in agroforestry. Springer Netherlands, Dordrecht, pp 127–160. https://doi.org/10.1007/978-1-4020-8272-6_7

    Chapter  Google Scholar 

  • Navarro-Cerrillo RM, Varo-Martínez M, Acosta C, Palacios Rodríguez G, Sánchez-Cuesta R, Ruiz-Gómez FJ (2019) Integration of WorldView-2 and airborne laser scanning data to classify defoliation levels in Quercus ilex L. Dehesas affected by root rot mortality: management implications. For Ecol Manag 451:117564. https://doi.org/10.1016/j.foreco.2019.117564

    Article  Google Scholar 

  • Oßwald W, Fleischmann F, Rigling D, Coelho AC, Cravador A, Diez J, Dalio RJ, Horta Jung M, Pfanz H, Robin C, Sipos G, Solla A, Cech T, Chambery A, Diamandis S, Hansen E, Jung T, Orlikowski LB, Parke J, Prospero S, Werres S (2014) Strategies of attack and defence in woody plant–Phytophthora interactions. Forest Pathol 44:169–190. https://doi.org/10.1111/efp.12096

    Article  Google Scholar 

  • Pemán García J, Navarro Cerrillo R, Prada Saez MA, Serrada Hierro R (2021) Bases técnicas y ecológicas del proyecto de repoblación forestal. Ministerio para la Transición Ecológica y el Reto Demográfico

  • Perry JN (1995) Spatial analysis by distance indices. J Anim Ecol 64:303–314. https://doi.org/10.2307/5892

    Article  Google Scholar 

  • Perry JN, Bell ED, Smith RH, Woiwod IP (1996) SADIE: software to measure and model spatial pattern. Asp Appl Biol 46:95–102

    Google Scholar 

  • Pollastrini M, Feducci M, Bonal D, Fotelli M, Gessler A, Grossiord C, Guyot V, Jactel H, Nguyen D, Radoglou K, Bussotti F (2016) Physiological significance of forest tree defoliation: results from a survey in a mixed forest in Tuscany (central Italy). For Ecol Manag 361:170–178. https://doi.org/10.1016/j.foreco.2015.11.018

    Article  Google Scholar 

  • Quero JL, Maestre FT, Ochoa V, García-Gómez M, Delgado-Baquerizo M (2013) On the importance of shrub encroachment by sprouters, climate, species richness and anthropic factors for ecosystem multifunctionality in semi-arid Mediterranean ecosystems. Ecosystems 16:1248–1261. https://doi.org/10.1007/s10021-013-9683-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • QGIS.org (2022) QGIS Geographic Information System. QGIS Association

  • R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Ramón Vallejo V, Smanis A, Chirino E, Fuentes D, Valdecantos A, Vilagrosa A (2012) Perspectives in dryland restoration: approaches for climate change adaptation. New Forest 43:561–579. https://doi.org/10.1007/s11056-012-9325-9

    Article  Google Scholar 

  • Robin C, Capron G, Desprez-Loustau ML (2001) Root infection by Phytophthora cinnamomi in seedlings of three oak species. Plant Pathol 50:708–716. https://doi.org/10.1046/j.1365-3059.2001.00643.x

    Article  Google Scholar 

  • Rodríguez-Molina MC, Torres‐Vila LM, Blanco‐Santos A, Núñez EJP, Torres‐Álvarez E (2002) Viability of holm and cork oak seedlings from acorns sown in soils naturally infected with Phytophthora cinnamomi. Forest Pathol 32:365–372. https://doi.org/10.1046/j.1439-0329.2002.00297.x

    Article  Google Scholar 

  • Rodríguez-Calcerrada J, Sancho-Knapik D, Martin-StPaul NK, Limousin JM, McDowell NG, Gil-Pelegrín E (2017) Drought-induced oak decline—factors involved, physiological dysfunctions, and potential attenuation by forestry practices. In: Gil-Pelegrín E, Peguero-Pina JJ, Sancho-Knapik D (eds) Oaks physiological ecology. Exploring the functional diversity of genus Quercus L., Tree Physiology, Springer International Publishing, Cham, pp 419–451. https://doi.org/10.1007/978-3-319-69099-5_13

  • Rosseel Y (2012) Lavaan: an R package for structural equation modeling and more. Version 0.5–12 (BETA). J Stat Softw 48:1–36. https://doi.org/10.18637/jss.v048.i02

    Article  Google Scholar 

  • Ruiz-Gómez FJ (2018) Study of the interaction between root rot oomycetes and Quercus ilex L. Universidad de Córdoba, Idep - Universidad de Córdoba

    Google Scholar 

  • Ruiz-Gómez FJ, Navarro-Cerrillo RM, Sánchez-Cuesta R, Pérez-de-Luque A (2015) Histopathology of infection and colonization of Quercus ilex fine roots by Phytophthora cinnamomi. Plant Pathol 64:605–616. https://doi.org/10.1111/ppa.12310

    Article  CAS  Google Scholar 

  • Ruiz-Gómez FJ, Pérez-de-Luque A, Sánchez-Cuesta R, Quero JL, Navarro-Cerrillo RM (2018) Differences in the response to acute drought and Phytophthora cinnamomi rands infection in Quercus ilex L. Seedl For 9:634. https://doi.org/10.3390/f9100634

    Article  Google Scholar 

  • Ruiz-Gómez FJ, Pérez-de-Luque A, Navarro-Cerrillo RM (2019) The involvement of Phytophthora root rot and drought stress in holm oak decline: from ecophysiology to microbiome influence. Curr For Rep 5:251–266. https://doi.org/10.1007/s40725-019-00105-3

    Article  Google Scholar 

  • Servicio de Ordenación y Defensa de los Recursos Forestales (2006) Manual para el establecimiento y la evaluación de las parcelas de: La Red Andaluza de Seguimiento de Daños sobre Ecosistemas Forestales (Red SEDA) y la Red Andaluza de Seguimiento de Daños sobre Ecosistemas Forestales con presencia de Pinsapo (Red PINSAPO)

  • Sánchez M, Caetano P, Ferraz J, Trapero A (2002) Phytophthora disease of Quercus ilex in South-Western Spain. For Pathol 32:5–18. https://doi.org/10.1046/j.1439-0329.2002.00261

    Article  Google Scholar 

  • Sánchez-Cuesta R, Navarro-Cerrillo RM, Quero JL, Ruiz-Gómez FJ (2020) Small-scale abiotic factors influencing the spatial distribution of Phytophthora cinnamomi under declining Quercus ilex trees. Forests 11:375. https://doi.org/10.3390/f11040375

    Article  Google Scholar 

  • Sánchez-Cuesta R, Ruiz-Gómez FJ, Duque-Lazo J, González-Moreno P, Navarro-Cerrillo RM (2021) The environmental drivers influencing spatio-temporal dynamics of oak defoliation and mortality in dehesas of Southern Spain. For Ecol Manag 485:118946. https://doi.org/10.1016/j.foreco.2021.118946

    Article  Google Scholar 

  • San-Eufrasio B, Castillejo M, Labella-Ortega M, Ruiz-Gómez FJ, Navarro-Cerrillo RM, Tienda-Parrilla M, Jorrín-Novo JV, Rey MD (2021) Effect and response of Quercus ilex subsp. ballota [Desf.] Samp. Seedlings from three contrasting Andalusian populations to individual and combined Phytophthora cinnamomi and drought stresses. Front Plant Sci 12:17

    Article  Google Scholar 

  • Schermelleh-Engel K, Moosbrugger H, Müller H (2003) Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods Psychol Res Online 8:23–74

    Google Scholar 

  • Sena K, Crocker E, Vincelli P, Barton C (2018) Phytophthora cinnamomi as a driver of forest change: implications for conservation and management. For Ecol Manag 409:799–807. https://doi.org/10.1016/j.foreco.2017.12.022

    Article  Google Scholar 

  • Serrano MS, De Vita P, Fernández-Rebollo P, Sánchez-Hernández ME (2012) Calcium fertilizers induce soil suppressiveness to Phytophthora cinnamomi root rot of Quercus ilex. Eur J Plant Pathol 132:271–279. https://doi.org/10.1007/s10658-011-9871-6

    Article  CAS  Google Scholar 

  • Serrano MS, Ríos P, González M, Sánchez ME (2015) Experimental minimum threshold for Phytophthora cinnamomi root disease expression on Quercus suber. Phytopathol Mediterr 54:461–464

    Google Scholar 

  • Shearer BL, Crane CE (2011) Habitat suitability of soils from a topographic gradient across the Fitzgerald River National Park for invasion by Phytophthora cinnamomi. Australas Plant Pathol 40:168–179. https://doi.org/10.1007/s13313-010-0026-6

    Article  Google Scholar 

  • Shearer BL, Dillon MJ, Kinal J, Buehring RM (2010) Temporal and spatial soil inoculum dynamics following Phytophthora cinnamomi invasion of Banksia woodland and Eucalyptus marginata forest biomes of south-western Australia. Australas Plant Pathol 39:293–311. https://doi.org/10.1071/AP09095

    Article  Google Scholar 

  • Shearer BL, Crane CE, Fairman RG, Dillon MJ, Buehrig RM (2014) Spatio-temporal variation in invasion of woodlands and forests by Phytophthora cinnamomi. Australas Plant Pathol 43:327–337. https://doi.org/10.1007/s13313-014-0274-y

    Article  Google Scholar 

  • Simón N, Montes F, Díaz-Pinés E, Benavides R, Roig S, Rubio A (2013) Spatial distribution of the soil organic carbon pool in a Holm oak dehesa in Spain. Plant Soil 366:537–549. https://doi.org/10.1007/s11104-012-1443-9

    Article  CAS  Google Scholar 

  • Sutton-Grier AE, Kenney MA, Richardson CJ (2010) Examining the relationship between ecosystem structure and function using structural equation modelling: a case study examining denitrification potential in restored wetland soils. Ecol Model 221:761–768. https://doi.org/10.1016/j.ecolmodel.2009.11.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Campo Baldío S.L. for providing access to the field plots and data support. The Spanish Ministry of Economy and Competitiveness supported this research through the ESPECTRAMED (CGL2017-86161-R) project. P.G.-M. was supported by a “Juan de la Cierva-Incorporación” contract (MINECO, IJCI-2017-31733) and Plan Propio UCO 2019. F.J.R.-G. was supported by a post-doctoral fellowship of the Junta de Andalucía (Spain) and the European Social Fund 2014–2020 Program (Ref. DOC_0055). We acknowledge the institutional support of the University of Cordoba-Campus de Excelencia CEIA3. We also thank the ERSAF group for their technical assistance during this research. The authors would like to thank the outstanding work of the anonymous reviewers, and their constructive comments about the work, which substantially improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RSC, RMNC; Methodology: RSC, ACM, FJRG; Formal analysis and investigation: RSC, ACM, PGM, FJRG; Writing-original draft preparation: RSC, RMNC, FJRG; Writing-review and editing: RSC, PGM, ACM, RMNC, FJRG; Funding acquisition: RMNC; Supervision: RMNC, FJRG.

Corresponding author

Correspondence to Francisco José Ruiz-Gómez.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4365 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Cuesta, R., González-Moreno, P., Cortés-Márquez, A. et al. Soil distribution of Phytophthora cinnamomi inoculum in oak afforestation depends on site characteristics rather than host availability. New Forests 54, 1037–1059 (2023). https://doi.org/10.1007/s11056-022-09951-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-022-09951-9

Keywords

Navigation