Skip to main content
Log in

Climate and local factors influence Eucalyptus globulus establishment after off-season fires

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Eucalyptus globulus Labill. is one of the most widely planted hardwood species worldwide. This species occupies a quarter of the country's forested area in Portugal, so there is a growing concern about its post-fire dispersal. Although it is generally recognised that fire promotes E. globulus natural regeneration and that precipitation and topography influence recruitment, little is known about the role of post-fire conditions on the establishment of the species following off-season fires. We examine how post-fire conditions affect E. globulus natural regeneration and invasive potential. Sapling establishment was assessed in plantations and under old and large isolated eucalyptus trees (seed-trees) following two off-season fire events (2017 June and October fires). Abiotic and biotic local factors affected differently sapling establishment in plantations and under seed-trees. In plantations, sapling cover was more influenced by tree-related traits (age and height), whereas the conditions beneath seed-trees mitigated the impact of harsh conditions on saplings. In both cases, post-fire climatic conditions constrained natural regeneration, with less impact under seed-trees, reinforcing their importance in establishment success. Thus, isolated seed-trees should be considered while managing the species’ unplanned spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Águas A, Ferreira A, Maia P, Fernandes PM, Roxo L, Keizer J, Silva JS, Rego FC, Moreira F (2014) Natural establishment of Eucalyptus globulus Labill. in burnt stands in Portugal. For Eco Man 323:47–56. https://doi.org/10.1016/j.foreco.2014.03.012

    Article  Google Scholar 

  • Águas A, Incerti G, Saracino A, Lanzotti V, Silva JS, Rego FC, Mazzoleni S, Bonanomi G (2017) Fire effects on litter chemistry and early development of Eucalyptus globulus. Plant Soil 422:495–514. https://doi.org/10.1007/s11104-017-3419-2

    Article  CAS  Google Scholar 

  • Alves AM, Pereira JS, Silva JN (2007) O Eucaliptal em Portugal – Impactes Ambientais e Investigação Científica. ISAPress, Lisbon

    Google Scholar 

  • Amatulli G, Camia A, San-Miguel-Ayanz J (2013) Estimating future burned areas under changing climate in the EU-Mediterranean countries. Sci Total Environ 450–451:209–222. https://doi.org/10.1016/j.scitotenv.2013.02.014

    Article  CAS  PubMed  Google Scholar 

  • Anjos A, Fernandes P, Marques C, Borralho N, Valente C, Correia O, Máguas C, Chozas S (2021) Management and fire, a critical combination for Eucalyptus globulus dispersal. For Eco Man 490:119086. https://doi.org/10.1016/j.foreco.2021.119086

    Article  Google Scholar 

  • Bartoń K (2022) MuMIn: multi-model inference. R package version 1.46.0. https://CRAN.R-project.org/package=MuMIn

  • Brundu G, Pauchard A, Pyšek P, Pergl J, Bindewald AM, Brunori A, Canavan S, Campagnaro T, Celesti-Grapow L, de Dechoum MS, Dufour-Dror JM, Essl F, Flory SL, Genovesi P, Guarino F, Guangzhe L, Hulme PE, Jäger H, Kettle CJ, Krumm F, Langdon B, Lapin K, Lozano V, Le Roux JJ, Novoa A, Nũnez MA, Porté AJ, Silva JS, Schaffner U, Sitzia T, Tanner R, Tshidada N, Vítková M, Westergren M, Wilson JRU, Richardson DM (2020) Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts. NeoBiota 61:65–116. https://doi.org/10.3897/neobiota.61.58380

    Article  Google Scholar 

  • Callaham MA, Stanturf JA, Hammond WJ, Rockwood DL, Wenk ES, O'Brien JJ (2013) Survey to evaluate escape of eucalyptus spp. Seedlings from Plantations in Southeastern USA. Int J For Res 2013:1–10. https://doi.org/10.1155/2013/946374 

    Article  Google Scholar 

  • Calviño-Cancela M, Rubido-Bará M (2013) Invasive potential of Eucalyptus globulus: seed dispersal, seedling recruitment and survival in habitats surrounding plantations. For Eco Man 305:129–137. https://doi.org/10.1016/j.foreco.2013.05.037

    Article  Google Scholar 

  • Calviño-Cancela M, Lorenzo P, González L (2018) Fire increases Eucalyptus globulus seedling recruitment in forested habitats: effects of litter, shade and burnt soil on seedling emergence and survival. For Eco Man 409:826–834. https://doi.org/10.1016/j.foreco.2017.12.018

    Article  Google Scholar 

  • Castellnou M, Guiomar N, Rego F, Fernandes P (2018) Fire growth patterns in the 2018 mega fire episode of October 15, central Portugal. Adv Forest Fire Res. https://doi.org/10.14195/978-989-26-16-506_48

    Article  Google Scholar 

  • Castro-Díez P, Alonso Á, Saldaña-López A, Granda E (2021) Effects of widespread non-native trees on regulating ecosystem services. Sci Total Environ 778:146141. https://doi.org/10.1016/j.scitotenv.2021.146141

    Article  CAS  PubMed  Google Scholar 

  • Catry FX, Moreira F, Deus E, Silva JS, Águas A (2015) Assessing the extent and the environmental drivers of Eucalyptus globulus wildling establishment in Portugal: results from a countrywide survey. Biol Invas 17:3163–3181. https://doi.org/10.1007/s10530-015-0943-y

    Article  Google Scholar 

  • Chambers DP, Attiwill PM (1994) The ash-bed effect in Eucalyptus regnans forest—chemical, physical and microbiological changes in soil after heating or partial sterilization. Aust J Bot 42:739–749. https://doi.org/10.1071/BT9940739

    Article  CAS  Google Scholar 

  • Cremer KW (1977) Distance of seed dispersal in eucalypts estimated from seed weights. Aust for Res 7:225–228. https://doi.org/10.1071/BT9940739

    Article  Google Scholar 

  • De Martonne E (1926) Aerisme, et índices d’aridite. Comptesrendus De L’academie Des Sciences 182:1395–1398

    Google Scholar 

  • dos Santos P, Matias H, Deus E, Águas A, Silva JS (2015) Fire effects on capsules and encapsulated seeds from Eucalyptus globulus in Portugal. Plant Ecol 216:1611–1621. https://doi.org/10.1007/s11258-015-0544-y

    Article  Google Scholar 

  • FAO (2010) Global forest resource assessment. Forestry Department. Food and Agriculture Organization of the United Nations, Rome

  • Fernandes PM (2009) Combining forest structure data and fuel modelling to assess fire hazard in Portugal. Ann for Sci 66:415. https://doi.org/10.1051/forest/2009013

    Article  Google Scholar 

  • Fernandes P, Antunes C, Pinho P, Máguas C, Correia O (2016) Natural regeneration of Pinus pinaster and Eucalyptus globulus from plantation into adjacent natural habitats. For Eco Man 378:91–102

    Article  Google Scholar 

  • Fernandes P, Máguas C, Correia O (2017) Combined effects of climate, habitat, and disturbance on seedling establishment of Pinus pinaster and Eucalyptus globulus. Plant Ecol 218:501–515. https://doi.org/10.1007/s11258-017-0706-1

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  • Florence RG (1996) Ecology and silviculture of eucalypt forests. CSIRO, Collingwood

    Google Scholar 

  • Gassó N, Basnou C, Vilà M (2010) Predicting plant invaders in the Mediterranean through a weed risk assessment system. Biol Inv 12:463–476. https://doi.org/10.1007/s10530-009-9451-2

    Article  Google Scholar 

  • Gill AM (1981) Adapted response of Australian vascular plant species to fires. In: Gill AM, Groves RH, Noble IR (eds) Fire and the Australian biota. Australian Academy of Science, Canberra, pp 243–271

    Google Scholar 

  • Gill AM (1997) Eucalypts and fire: interdependent or independent? In: Williams JE, Woinarski JCZ (eds) Eucalypt ecology. Cambridge University Press, Cambridge, pp 151–1167

    Google Scholar 

  • Golivets M, Wallin KF (2018) Neighbour tolerance, not suppression, provides competitive advantage to non-native plants. Ecol Lett 21:745–459. https://doi.org/10.1111/ele.12934

    Article  PubMed  Google Scholar 

  • Gordon DR, Flory SL, Cooper AL, Morris SK (2012) Assessing the invasion risk of Eucalyptus in the United States using the Australian weed risk assessment. Int J For Res 2012:203768. https://doi.org/10.1155/2012/203768

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • ICNF (2019) IFN6 – Anexo Técnico. [pdf], 31 pp, versão 1.0 Instituto da Conservação da Natureza e das Florestas, Lisboa

  • IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press (in press)

  • IPMA (2021) https://www.ipma.pt/pt/educativa/tempo.clima/ (accessed in June 2021)

  • Jacobs MR (1979) Eucalypts for planting. FAO, Rome

    Google Scholar 

  • Korboulewsky N, Tétégan M, Besnault A, Cousin I (2010) Do rock fragments participate to plant water and mineral nutrition? Geophys Res Abstr 12

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen–Geiger climate classification updated. Meteorol Z 15:259–263

    Article  Google Scholar 

  • Lamont BB, LeMaitre DC, Cowling RM, Enright NJ (1991) Canopy seed storage in woody plants. Bot Rev 57:277–317

    Article  Google Scholar 

  • Larcombe MJ, Silva JS, Vaillancourt RE, Potts BM (2013) Assessing the invasive potential of Eucalyptus globulus in Australia: quantification of wildling establishment from plantations. Biol Invas 15:2763–2781

    Article  Google Scholar 

  • Lionello P, Malanotte-Rizzoli P, Boscolo R, Alpert P, Artale V, Li L, Luterbacher J, May W, Trigo R, Tsimplis M, Ulbrich U, Xoplaki E (2006) The Mediterranean climate: An overview of the main characteristics and issues. Develop Earth Environ Sci 4:1–26

    Google Scholar 

  • Marchante H, Morais M, Freitas H, Marchante E (2014) Guia prático para a identificação de Plantas Invasoras em Portugal. Imprensa da Universidade de Coimbra, Coimbra

    Book  Google Scholar 

  • Mateus P, Fernandes P (2014) Chapter 4 -Forest fires in portugal: dynamics, causes and policies. In: Reboredo F (ed) Forest context and policies in Portugal, present and future challenges. World Forests series, Springer, pp 97–114

  • Pausas JG, Vallejo VR (1999) The role of fire in European Mediterranean ecosystems. In: Chuvieco E (ed) Remote sensing of large wildfires in the European Mediterranean basin, pp 3–16

  • Queirós L, Deus E, Silva JS, Vicente J, Ortiz L, Fernandes PM, Castro-Díez P (2020) Assessing the drivers and recruitment potential of Eucalyptus globulus in the Iberian Peninsula. For Eco Man 466:118147. https://doi.org/10.1016/j.foreco.2020.118147

    Article  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/;

  • Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species—2013 update of the global database. Divers Distrib 19:1093–1094

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Sánchez-Benítez A, García-Herrera R, Barriopedro D, Sousa PM, Trigo RM (2018) June 2017: The Earliest European Summer Mega-heatwave of Reanalysis Period. Geophys Res Lett 45:1955–1962

    Article  Google Scholar 

  • Sanz-Elorza M, Dana ED, Sobrino E (2001) Checklist of invasive alien plants in Spain (Iberian Peninsula and Balearic Islands). Lazaroa 22:121–131

  • Shakesby RA (2011) Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth-Sci Rev 105:71–100

    Article  Google Scholar 

  • Siegel AF (2016) Chapter 12—Multiple regression: predicting one variable from several others in practical business statistics (seventh edition). Academic Press, London, pp 355–418

    Google Scholar 

  • Silva JS, Nereu M, Pinho S, Queirós L, Jésus C, Deus E (2021) Post-fire demography, growth, and control of Eucalyptus globulus Wildlings. Forests 12:156. https://doi.org/10.3390/f12020156

    Article  Google Scholar 

  • Tomé M, Almeida MH, Barreiro S, Branco MR, Deus E, Pinto G, Silva JS, Soares P, Rodríguez-Soalleiro R (2021) Opportunities and challenges of eucalyptus plantations in Europe: the Iberian Peninsula experience. Eur J For Res. 140:489–510. https://doi.org/10.1007/s10342-021-01358-z

    Article  Google Scholar 

  • Turco M, Bedia J, Di Liberto F, Fiorucci P, von Hardenberg J, Koutsias N, Llasat MC, Xystrakis F, Provenzale A (2016) Decreasing fires in mediterranean Europe. PLoS ONE 11:e0150663

    Article  PubMed  PubMed Central  Google Scholar 

  • Turco M, Jerez S, Augusto S, Tarín-Carrasco P, Ratola N, Jiménez-Guerrero P, Trigo RM (2019) Climate drivers of the 2017 devastating fires in Portugal. Sci Rep 9:13886

    Article  PubMed  PubMed Central  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Ziller SR, Dechoum MS, Zenni RD (2018) Predicting invasion risk of 16 species of eucalypts using a risk assessment protocol developed for Brazil. Austral Ecol 44:28–35. https://doi.org/10.1111/aec.1264

    Article  Google Scholar 

  • Zuur A, Ieno E, Walker N, Saveliev AA, Smith G (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

We thank Mariana Ramos, Inês Mirra, Bárbara O'Neill, Denisele Flores and Carla Saraiva for their helpful support in fieldwork. This research was funded by FCiências.ID and Forest and Paper Research Institute (RAIZ) in the frame of Andreia Anjos PhD scholarship, as well as by Fundação para a Ciência e a Tecnologia (FCT) and Centre for Ecology, Evolution and Environmental Changes (cE3c), Research Unit grant number UIDB/00329/2020. The FCT project PORBIOTA supported SC through a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

AA and JJ conducted fieldwork. All authors contributed to the conceptualization and methodology design; AA, JJ, and SC analyzed the data. AA led the writing, and all the authors made substantial contributions. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to A. Anjos.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjos, A., Jesus, J.G., Marques, C. et al. Climate and local factors influence Eucalyptus globulus establishment after off-season fires. New Forests 54, 981–992 (2023). https://doi.org/10.1007/s11056-022-09950-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-022-09950-w

Keywords

Navigation