Skip to main content

Forest active restoration for silvopastoral use in Northwestern Patagonia: relative importance of the nurse effect

Abstract

Ecological interactions, such as facilitation among plant species, has been identified as key for restoration actions. The stress-gradient hypothesis predicts that facilitation increases under harsh environments, but disturbance type and nurse shrub characteristics may modify this prediction. We aim at assessing the effect of two interacting factors (herbivory pressure and light availability) and palatability of the nurse shrub on the importance of nurse effect for active restoration of mixed evergreen forests of northern Patagonia (Argentina) for silvopastoral use. We planted Austrocedrus chilensis seedlings under two silvopastoral use intensities (higher and lower according to livestock seasonal movements) and under three micro-site treatments (palatable shrub, non-palatable shrub, inter-canopy), and evaluated survival and growth during three consecutive years. Under higher use intensity (increasing stress of light availability as desiccation risk and herbivory) we found contrasting effects of the nurse effect on seedling survival and growth, but the palatability of nurse shrub had no effect. Under higher use intensity, seedling survival was lower, while growth was higher. Higher values of seedling survival were found under low use intensity inter-canopy micro-site. Under high use, the presence of a nurse shrub is important for summer seedling survival, indicating its role in avoiding desiccation. The same occurred for winter seedling survival, where a nurse shrub may decrease mainly trampling risk. We highlight the importance of considering the interaction between disturbance factors for the net outcome of the nurse effect in active restoration actions, as it may allow for diverse actions to restoration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Amoroso MM, Larson BC (2010) Can a natural experiment be used as a tool to design partial cutting regimes? The decline of Austrocedrus chilensis forests, an example. J for Res 15:38–45. https://doi.org/10.1007/s10310-009-0139-3

    Article  Google Scholar 

  • Amoroso MM, Chillo MV, Alcalá V, Rezzano CA, Arpigiani DF, Villacide EM (2018) ¿Cómo modifica el uso silvopastoril la estructura y la dinámica poblacional de los bosques mixtos de ciprés de la cordillera y coihue? Ecosistemas 27:33–40. https://doi.org/10.7818/ECOS.1502

    Article  Google Scholar 

  • Amoroso MM, Peri PL, Lencinas MV, Soler Esteban R, Rovere A, Gonzalez Peñalba M, Chauchard L, Urretavizcaya MF, Logercio G, Mundo I, Cellini JM, Dezzotti A, Attis Beltran H, Bahamonde H, Ladio A, Gowda J, Gallo L, Quinteros P, Sola G and Martinez Pastur G (2021) Capítulo 11: Región Patagónica (Bosques Andino-Patagónicos). In: Peri PL, Martínez Pastur G, Schlichter T (eds) Uso sostenible del bosque: Aportes desde la Silvicultura Argentina. Ciudad Autónoma de Buenos Aires, 889 pp

  • Anthelme F, Gómez-Aparicio L, Montúfar R (2014) Nurse-based restoration of degraded tropical forests with tussock grasses: experimental support from the Andean cloud forest. J App Ecol 51:1534–1543. https://doi.org/10.1111/1365-2664.12311

    Article  Google Scholar 

  • Arias Sepúlveda JE, Chillo V (2017) Cambios en la diversidad funcional del sotobosque y la tasa de descomposición frente a diferentes intensidades de uso silvopastoril en el noroeste de la Patagonia Argentina. Ecol Austral 27:29–38. https://doi.org/10.25260/ea.17.27.1.0.297

    Article  Google Scholar 

  • Ashton MS, Kelty MJ (2018) The practice of silviculture: applied forest ecology. Wiley, Hoboken, p 776

    Google Scholar 

  • Bannister JR, Coopman R, Donoso P, Bauhus J (2013) The importance of microtopography and nurse canopy for successful restoration plant-ing of the slow-growing conifer Pilgerodendron uviferum. Forests 4:85–103

    Article  Google Scholar 

  • Barbosa JM, Asner GP (2017) Prioritizing landscapes for restoration based on spatial patterns of ecosystem controls and plant–plant interactions. J App Ecol 54:1459–1468. https://doi.org/10.1111/1365-2664.12857

    Article  Google Scholar 

  • Bartón K (2019) MuMIn: multi-model inference. R Packag. version 1.43.6. https://CRAN.R-project.org/package=MuMIn. Accessed 22 Mar 2021

  • Beauchesne D, Cazelles K, Archambault P, Dee LE and Gravel D (2021) On the sensitivity of food webs to multiple stressors. Ecol Letters 24: 2219–2237

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193. https://doi.org/10.1016/0169-5347(94)90088-4

    CAS  Article  PubMed  Google Scholar 

  • Blackhall M, Raffaele E, Veblen TT (2008) Cattle affect early post-fire regeneration in a Nothofagus dombeyi-Austrocedrus chilensis mixed forest in northern Patagonia, Argentina. Biol Cons 141:2251–2261. https://doi.org/10.1016/j.biocon.2008.06.016

    Article  Google Scholar 

  • Blackhall M, Veblen TT, Raffaele E (2015) Recent fire and cattle herbivory enhance plant-level fuel flammability in shrublands. J Veg Sci 26:123–133. https://doi.org/10.1111/jvs.12216

    Article  Google Scholar 

  • Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96:18–34. https://doi.org/10.1111/j.1365-2745.2007.01295.x

    Article  Google Scholar 

  • Caccia FD, Chaneton EJ, Kitzberger T (2009) Direct and indirect effects of understorey bamboo shape tree regeneration niches in a mixed temperate forest. Oecologia 161:771–780. https://doi.org/10.1007/s00442-009-1412-z

    Article  PubMed  Google Scholar 

  • Cardozo AG (2014) Estrategias socio-productivas de establecimientos ganaderos del sudoeste de la provincia de Río Negro, Argentina. Tesis de Maestría, Universdiad de Buenos Aires, Argentina. 183 pp, Available from http://ri.agro.uba.ar/files/download/tesis/maestria/2014cardozoandreagabriela.pdf. Accessed 22 Mar 2021

  • Caselli M, Loguercio GÁ, Urretavizcaya MF, Defossé GE (2020) Developing silvicultural tools for managing mixed forest structures in Patagonia. For Sci 66:119–129. https://doi.org/10.1093/forsci/fxz052

    Article  Google Scholar 

  • Caselli M, Urretavizcaya MF, Logercio GA, Contardi L, Gianolini S, Defossé GE (2021) Effects of canopy cover and neighboring vegetation on the early development of planted Austrocedrus chilensis and Nothofagus dombeyi in north Patagonian degraded forests. For Ecol Manage 479:118543. https://doi.org/10.1016/j.foreco.2020.118543

    Article  Google Scholar 

  • Chillo V, Vázquez DP, Amoroso MM, Bennett EM (2018) Land-use intensity indirectly affects ecosystem services mainly through plant functional identity in a temperate forest. Funct Ecol 32:1390–1399. https://doi.org/10.1111/1365-2435.13064

    Article  Google Scholar 

  • Chillo V, Ladio AH, Salinas Sanhueza J, Arpigiani DF, Soler R, Cardozo A, Peri P, Amoroso MM (2021) Silvopastoral systems in Northern Argentine Chilean andean Patagonia: ecosystem services provision in a complex territory. In: MartínezPastur G et al (eds) Ecosystem services in Patagonia: a multi-criteria approach for an integrated assessment. Springer, Cham, pp 115–138

    Chapter  Google Scholar 

  • Dezzoti A (1996) Austrocedrus chilensis and Nothofagus dombeyi stand development during secondary succession, in Northwestern Patagonia, Argentina. For Ecol Manag 89:125–137. https://doi.org/10.1016/S0378-1127(96)03860-1

    Article  Google Scholar 

  • Gavinet J, Prévosto B, Fernández C (2016) Do shrubs facilitate oak seedling establishment in Mediterranean pine forest understory? For Ecol Manage 318:289–296. https://doi.org/10.1016/j.foreco.2016.09.045

    Article  Google Scholar 

  • Gobbi M, Schlichter T (1998) Survival of Austrocedrus chilensis seedlings in relation to microsite conditions and forest thinning. For Ecol Manage 111(1998):137–146

    Article  Google Scholar 

  • Gómez-Aparicio L (2009) The role of plant interactions in the restoration of degraded ecosystems: a meta-analysis across life-forms and ecosystems. J Ecol 97:1202–1214. https://doi.org/10.1111/j.1365-2745.2009.01573.x

    Article  Google Scholar 

  • Gómez-Aparicio L, Zamora R, Gómez JM, Hódar JA, Castro J, Baraza E (2004) Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecol Appl 14:1128–1138

    Article  Google Scholar 

  • Gordon AM, Newman SM, Coleman BRW, Thevathasan NV (2018) Temperate agroforestry: an overview. In: Gordon AM, Newman SM, Coleman BRW (eds) Temperate agroforestry systems. CAB International, Wallingford, pp 1–6

    Chapter  Google Scholar 

  • Gowda JJH, Garibaldi A, Pirk G, Blackhall M, Chaneton EJ, de Paz M, Díaz S, Galende G, Mazía N, Paritsis J, Raffaele E, Relva MA, Sasal Y (2014) Herbívoros: actores clave. In: Raffaele E et al (eds) Ecología e historia natural de la Patagonia Andina, un cuarto de siglo de investigación en biogeografía, ecología y conservación. Fundación de Historia Natural Félix de Azara, Ciudad Autónoma de Buenos Aires, pp 91–112

    Google Scholar 

  • Guignabert A, Augusuto L, Gonzalez M, Chioeaux C, Delerue F (2020) Complex biotic interactions mediated by shrubs: revisiting the stress-gradient hypothesis and consequences for tree seedling survival. J Appl Ecol 57:1341–1350. https://doi.org/10.1111/1365-2664.13641

    Article  Google Scholar 

  • Ibanez T, Hart PJ (2020) Spatial patterns of tree recruitment in a montane Hawaiian wet forest after cattle removal and pig population control. Appl Veg Sci 23:197–209. https://doi.org/10.1111/avsc.12478

    Article  Google Scholar 

  • Jones HP (2013) Impact of ecological restoration on ecosystem services. In: Levin S (ed) Encyclopedia of biodiversity, 2nd edn. Springer, Cham, pp 199–208

    Chapter  Google Scholar 

  • Kitzberger T, Steinaker DF, Veblen TT (2000) Effects of climatic variability on facilitation of tree establishment in Northern Patagonia. Ecology 81:1914–1924. https://doi.org/10.1890/0012-9658(2000)081[1914:EOCVOF]2.0.CO;2

    Article  Google Scholar 

  • La Manna L, Collantes C, Bava J, Rajchenberg M (2008) Seedling recruitment of Austrocedrus chilensis in relation to cattle use, microsite environment and forest disease. Ecologia Austral 18:27–41

    Google Scholar 

  • Letourneau FJ, Andenmatten E, Schlichter T (2004) Effect of climatic conditions and tree size on Austrocedrus chilensis–shrub interactions in Northern Patagonia. For Ecol Manag 191:29–38. https://doi.org/10.1016/j.foreco.2003.11.002

    Article  Google Scholar 

  • Losada Palenzuela S, Amoroso MM, Bogino SM (2018) Regeneration dynamics of Austrocedrus chilensis and Nothofagus dombeyi in declining forests. Bosque 39:333–345

    Article  Google Scholar 

  • Madariaga MC (2019) El valle del río Manso inferior y su funcionamiento como sistema. Comunicación técnica Inta EEA S.C: Bariloche, Área Desarrollo Rural, N°250. Ediciones INTA. http://hdl.handle.net/20.500.12123/6359. Accessed 22 Mar 2021

  • Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205. https://doi.org/10.1111/j.1365-2745.2008.01476.x

    Article  Google Scholar 

  • Navarro-Cano JA, Goberna M, Verdú M (2019) Using plant functional distances to select species for restoration of mining sites. J App Ecol 56:2353–2362. https://doi.org/10.1111/1365-2664.13453

    Article  Google Scholar 

  • Niinemets U (2010) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history stress interactions, tolerance and acclimation. For Ecol Manag 260:1623–1639. https://doi.org/10.1016/j.foreco.2010.07.054

    Article  Google Scholar 

  • Nuñez CI, Raffaele E, Nuñez MA, Cuassolo F (2009) When do nurse plants stop nursing? Temporal changes in water stress levels in Austrocedrus chilensis growing within and outside shrubs. J Veg Sci 20:1064–1071. https://doi.org/10.1111/j.1654-1103.2009.01107.x

    Article  Google Scholar 

  • Oudkerk L, Pastorino M, Gallo L (2003) Siete años de experiencia en la restauración postincendio de un bosque de Ciprés de la Cordillera. Patagonia Forestal 9:4–7

    Google Scholar 

  • Peláez M, Dirzo R, Fernandes GW, Perea R (2019) Nurse plant size and biotic stress determine quantity and quality of plant facilitation in oak savannas. For Ecol Manag 437:435–442. https://doi.org/10.1016/j.foreco.2019.02.010

    Article  Google Scholar 

  • Peri PL, Dube F, Varella AC (2016) Silvopastoral systems in the subtropical and temperate zones of South America: an overview. In: Peri PL, Dube F, Varella A (eds) Silvopastoral systems in Southern South America. Springer, Amsterdam, pp 1–8

    Chapter  Google Scholar 

  • Posadas JM, Aide MT, Cavelier J (2001) Cattle and weedy shrubs as restoration tools of tropical montane rainforest. Restor Ecol 8:370–379. https://doi.org/10.1046/j.1526-100x.2000.80052.x

    Article  Google Scholar 

  • Relva MA, Veblen TT (1998) Impacts of introduced large herbivores on Austrocedrus chilensis forests in Northern Patagonia, Argentina. For Ecol Manag 108:27–40. https://doi.org/10.1016/S0378-1127(97)00313-

    Article  Google Scholar 

  • Rey Benayas JM, Newton AC, Díaz A, Bullock JM (2009) Enhancement of biodiversity and ecological services by ecological restoration: a meta-analysis. Science 352:1121. https://doi.org/10.1126/science.1172460

    CAS  Article  Google Scholar 

  • Rodríguez-García E, Bravo F, Spies TA (2011) Effects of overstorey canopy, plant–plant interactions and soil properties on Mediterranean maritime pine seedling dynamics. For Ecol Manage 262:244–251. https://doi.org/10.1016/j.foreco.2011.03.029

    Article  Google Scholar 

  • Rovere AE (2008) Ensayo de restauración con Austrocedrus chilensis (Cupressaceae) en Patagonia, Argentina. In: González Espinosa M, Rey Benayas JM, Ramírez Marcial N (eds) Restauración de bosques en América Latina. Mundi-Prensa, México City, pp 6–21

    Google Scholar 

  • Sack L (2004) Responses of temperate woody seedlings to shade and drought: do trade-offs limit potential niche differentiation? Oikos 107:110–127

    Article  Google Scholar 

  • Smit C, Vandenberghe C, Den Ouden J, Müller-Schärer H (2007) Nurse plants, tree saplings and grazing pressure: changes in facilitation along a biotic environmental gradient. Oecologia 152:265–273. https://doi.org/10.1007/s00442-006-0650-6

    Article  PubMed  Google Scholar 

  • Smit C, Rietkerk M, Wassen MJ (2009) Inclusion of biotic stress (consumer pressure) alters predictions from the stress gradient hypothesis. J Ecol 97:1215–1219. https://doi.org/10.1111/j.1365-2745.2009.01555.x

    Article  Google Scholar 

  • Soliveres S, Maestre FT (2014) Plant-plant interactions, environmental gradients and plant diversity: a global synthesis of community-level studies. Persp Plant Ecol Evol Syst 16:154–163. https://doi.org/10.1016/j.ppees.2014.04.001

    Article  Google Scholar 

  • Soliveres S, Eldridge DJ, Maestre FT, Bowker MA, Tighe M, Escudero A (2011) Microhabitat amelioration and reduced competition among understorey plants as drivers of facilitation across environmental gradients: towards a unifying framework. Persp Plant Ecol Evol Syst 13:247–258. https://doi.org/10.1016/j.ppees.2011.06.001

    Article  Google Scholar 

  • Svriz M, Damascos MA, Zimmermann H, Hensen I (2013) The exotic shrub Rosa rubiginosa as a nurse plant. Implications for the restoration of disturbed temperate forests in Patagonia, Argentina. For Ecol Manag 289:234–242. https://doi.org/10.1016/j.foreco.2012.09.037

    Article  Google Scholar 

  • The R Development Core Team (2017) R: a language and environment for statistical computing. ISBN 3-900051-07-0

  • Urretavizcaya MF, Defossé GE (2013) Effects of nurse shrubs and tree shelters on the survival and growth of two Austrocedrus chilensis seedling types in a forest restoration trial in semiarid Patagonia, Argentina. Ann for Sci 70:21–30. https://doi.org/10.1007/s13595-012-0234-z

    Article  Google Scholar 

  • Urretavizcaya MF, Defossé GE (2019) Restoration of burned and post-fire logged Austrocedrus chilensis stands in Patagonia: effects of competition and environmental conditions on seedling survival and growth. Int J Wildlife Fire 28:365–376. https://doi.org/10.1071/WF18154

    Article  Google Scholar 

  • Urretavizcaya MF, Pastorino M, Mondino V, Contardi L (2015) La plantación con árboles nativos. In: Chauchard L, Frugoni MC, Nowak C (eds) Manual de buenas prácticas para el manejo de plantaciones forestales en el Noroeste de la Patagonia. Ministerio de Agroindustria, Buenos Aires, pp 335–368

    Google Scholar 

  • Urretavizcaya MF, Gonda HE, Defossé GE (2017) Effects of post-fire plant cover in the performance of two cordilleran cypress (Austrocedrus chilensis) seedling stocktypes planted in burned forests of Northeastern Patagonia, Argentina. Environ Manag 59:419–430. https://doi.org/10.1007/s00267-016-0793-0

    Article  Google Scholar 

  • Urretavizcaya MF, Caselli M, Contardi L, Loguercio GA, and Defossé GE (2018) Enriquecimiento de bosques degradados de cirpés de la coordillera con especies nativas de alto valor forestal. Informe Final Proyecto PIA 14067. UCAR-CIEFAP, Argentina

  • Vandenberghe C, Smit C, Pohl M, Buttler A, Freléchoux F (2009) Does the strength of facilitation by nurse shrubs depend on grazing resistance of tree saplings? Basic Appl Ecol 10:427–436. https://doi.org/10.1016/j.baae.2008.08.009

    Article  Google Scholar 

  • Veblen TT (1989) Nothofagus regeneration in treefall gaps in Northern Patagonia. Can J for Res 19:365–371

    Article  Google Scholar 

  • Veblen TT, Mermoz M, Martin C, Kitzberger T (1992) Ecological impacts of introduced animals in Nahuel Huapi National Park. Argentina Cons Biol 6:71–83. https://doi.org/10.1046/j.1523-1739.1992.610071.x

    Article  Google Scholar 

  • Veblen TT, Burns BR, Kitzberger T, Lara A, Villalba R (1995) The ecology of the conifers of southern South America. In: Enright NJ, Hill RS (eds) Ecology of the Southern Conifers. Melbourne University Press, Carlton, pp 120–155

    Google Scholar 

Download references

Acknowledgements

Mariana Campo, Brisa Serena Güenuleo, M. Noel Szudruk, Liliana Barbosa, Facundo Gómez and Manuel de Paz helped with field work. We are grateful to Lisandro and Oscar Lanfre for allowing us to install the experiment in their ranch; and to Ubuntu’s and R’s developers and contributors for making science available to everyone. This work was supported by CONICET, Agencia Nacional de Promoción Científica y Tecnológica [Grant No. PICT 2015-1692] and Universidad Nacional de Río Negro [Grant No. PI 40-B-478].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Chillo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 59 kb)

11056_2022_9914_MOESM2_ESM.pdf

Supplementary file2 (PDF 103 kb) Fig. S1 Correlation between light income readings (log transformed) and soil moisture readings at each micro-site, during three consecutive summers.

11056_2022_9914_MOESM3_ESM.pdf

Supplementary file3 (PDF 6 kb) Fig. S2 Low silvopastoral use intensity. Light and soil moisture conditions at each micro-site treatment (inter-canopy, non-palatable and palatable shrub) during three consecutive years.

11056_2022_9914_MOESM4_ESM.pdf

Supplementary file4 (PDF 6 kb) Fig. S3 High silvopastoral use intensity. Light and soil moisture conditions at each micro-site treatment (inter-canopy, non-palatable and palatable shrub) during three consecutive years.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chillo, V., Amoroso, M., Arpigiani, D. et al. Forest active restoration for silvopastoral use in Northwestern Patagonia: relative importance of the nurse effect. New Forests (2022). https://doi.org/10.1007/s11056-022-09914-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11056-022-09914-0

Keywords

  • Facilitation
  • Nurse shrub
  • Ciprés de la cordillera
  • Multiple stressors
  • Stress gradient hypothesis