Skip to main content

Genetic variation in natural and nursery populations of Styrax magnus (Styracaceae) for the restoration of humid mountain forests in southern Mexico

Abstract

Humid mountain forests (HMF) in Mexico have been heavily degraded by anthropogenic activities. A key conservation strategy consists of propagating HMF species in forest nurseries for subsequent repopulation in degraded areas. We evaluated genetic diversity in three natural populations (Huitepec, Bazom, and Mitzitón) and one nursery population of Styrax magnus Lundell (Styracaceae) in Chiapas, Mexico. We expected a lower genetic diversity in the nursery than in wild populations. Styrax magnus is restricted to the Mexican state of Chiapas, close to the border with Guatemala and is likely to be at risk of extinction due to habitat loss and its low establishment rate. We used ten enzyme loci to determine genetic diversity. Genetic structure was examined by calculating genetic differentiation (Fst) and Nei’s genetic distances (Nei, Am Nat 106:283–292, 1972), in addition a Bayesian analysis was performed. The populations examined showed a moderate (He = 0.31) average genetic diversity. Bazom was the most distant and genetically differentiated population and showed the lowest genetic diversity (He = 0.21). Mitzitón was the most diverse population (He = 0.40), whereas the nursery population showed an intermediate diversity (He = 0.30). We found a high level of total genetic differentiation (Fst = 0.48, P < 0.001), suggesting a limited gene flow between the populations studied. Our results suggest that propagation in the nursery promotes an intermediate level of genetic diversity (He) relative to wild populations, likely because the nursery population was made up by random seed collection from several sites. The genetic monitoring of introduced populations is highly recommended for an in-depth assessment of the success of actions aiming to conserve and restore HMF in Chiapas.

This is a preview of subscription content, access via your institution.

Fig. 1

source: GBIF (https://www.gbif.org/occurrence/search?q=styrax%20magnus [accessed: November 20, 2020])

Fig. 2
Fig. 3

Data availability

All the data related to this research are in the manuscript that is presented.

References

  • Allendorf FW (2017) Genetics and the conservation of natural populations: allozymes to genomes. Mol Ecol 26:420–430. https://doi.org/10.1111/mec.13948

    CAS  Article  PubMed  Google Scholar 

  • Breedlove DE (1981) Flora of Chiapas. Part 1: Introduction to the Flora of Chiapas. California Academy of Sciences, San Francisco, USA

  • Cheliak WM, Pitel JA (1984) Techniques for starch electrophoresis from forest trees. Information Report #PI-X-42. Institute of the Canadian Forest Service, Petawawa National Forestry Reserve, Chalk River, Ontario

  • Chiappero MB, Panzetta-Dutari GM, Gómez D, Castillo E, Polop JJ, Gardenial CN (2011) Contrasting genetic structure of urban and rural populations of the wild rodent Calomys musculinus (Cricetidae, Sigmodontinae). Mamm Biol 76:41–50. https://doi.org/10.1016/j.mambio.2010.02.003

    Article  Google Scholar 

  • Choon AC, O’Brien MJ, NgKK S, Chin LP, Hector A, Schmid B, Shimizu KK (2016) Genetic diversity of two tropical tree species of the Dipterocarpaceae following logging and restoration in Borneo: high genetic diversity in plots with high species diversity. Plant Ecol Divers 9:459–469. https://doi.org/10.1080/17550874.2016.1270363

    Article  Google Scholar 

  • Clewell AF, Aronson J (2013) Ecological restoration: principles, values, and structure of an emerging profession. Island Press

    Book  Google Scholar 

  • Cruz NO, Aguilar AV, Twyford AD, Neaves LE, Pennington RT, Lopes AV (2014) Genetic and ecological outcomes of Inga vera subsp. affinis (Leguminosae) tree plantations in a fragmented tropical landscape. PLoS ONE 9:2–8. https://doi.org/10.1371/journal.pone.0099903

    CAS  Article  Google Scholar 

  • Cruzan MB (2001) Population size and fragmentation thresholds for the maintenance of genetic diversity in the herbaceous endemic Scutellaria montana (Lamiaceae). Evolution 55:569–1580. https://doi.org/10.1111/j.0014-3820.2001.tb00676.x

    Article  Google Scholar 

  • Cruz-Salazar B, Ruiz-Montoya L, Pérez-Gómez MT, García-Bautista M, Ramírez-Marcial N (2020) Diversity and floristic enrichment with montane cloud forest species, in an urban forest in Chiapas Mexico. Madera y Bosques 26(3):1–13. https://doi.org/10.21829/myb.2020.2632100

    Article  Google Scholar 

  • Dawson IK, Hollingsworth PM, Doyle JJ, Kresovich S, Weber JC et al (2007) Origins and genetic conservation of tropical trees in agroforestry systems: a case study from Peruvian Amazon. Conserv Genet 9:361–372. https://doi.org/10.1007/s10592-007-9348-5

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    CAS  Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 135(2):479–491

    Article  Google Scholar 

  • Fady-Welterlen B (2005) Is there really more biodiversity in Mediterranean forest ecosystems? Taxon 54:905–910. https://doi.org/10.2307/25065477

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164(4):1567–1587

    CAS  Article  Google Scholar 

  • Frankham TJ, Ballow JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press

    Book  Google Scholar 

  • Fritsch P (1996) Isozyme analysis of intercontinental disjuncts within Styrax (Styracaceae): implications for the Madrean-Tethyan hypothesis. Am J Bot 83:342–355. https://doi.org/10.1002/j.1537-2197.1996.tb12715.x

    CAS  Article  Google Scholar 

  • Fritsch P (1997) A revision of styrax (Styracaceae) for western Texas, Mexico and Mesoamerica. Ann Missouri Bot Gard 84(4):705–761. https://doi.org/10.2307/2992026

    Article  Google Scholar 

  • Galindo-Jaimes L, González-Espinosa M, Quintana-Ascencio P, García-Barrios L (2002) Tree composition and structure in disturbed stands with varying dominance by Pinus spp. in the highlands of Chiapas. México Plant Ecol 162:259–272. https://doi.org/10.1023/A:1020309004233

    Article  Google Scholar 

  • González-Espinosa M, Quintana-Ascencio PF, Ramírez-Marcial N, Gaytán-Guzmán P (1991) Secondary succession in disturbed Pinus-Quercus forest in the highlands of Chiapas, Mexico. J Veg Sci 2:351–360. https://doi.org/10.2307/3235927

    Article  Google Scholar 

  • González-Espinosa M, Ochoa-Gaona S, Ramírez-Marcial N, Quintana-Ascencio PF (1995) Current land-use trends and conservation of old-growth forest habitats in The Highlands of Chiapas, Mexico. In: Wilson M, Sader S (eds) Neotropical Migratory Birds in Mexico. Maine Agricultural and Forest Experimental Station, pp 190–198

    Google Scholar 

  • González-Espinosa M, Ramírez-Marcial N, Camacho-Cruz A, Holz SC, Rey-Benayas JM, Parra-Vázquez MRP (2007) Restauración de bosques en territorios indígenas de Chiapas: modelos ecológicos y estrategias de acción. Bol Soc Bot de México 80:11–23

    Google Scholar 

  • González-Espinosa M, Ramírez-Marcial N, Newton AC, Rey-Benayas JM, Camacho-Cruz A, Armesto JJ, Lara A, Pre-moli AC, Williams-Linera G, Altamirano A, Alvarez-Aquino C, Cortés M, Echeverría C, Galindo-Jaimes L, Muñiz-Castro MA, Núñez-Avila MC, Pedraza RA, Rovere AE, Smith- Ramírez C, Thiers O, Zamorano C (2007) Restoration of forest ecosystems in fragmented landscapes of temperate and montane tropical Latin America. In: Newton AC (ed) Biodiversity Loss and Conservation in Fragmented Forest Landscapes: The Forests of Montane Mexico and Temperate South America. CABI, pp 335–369

    Google Scholar 

  • González-Espinosa M, Meave JA, Ramírez-Marcial N, Toledo-Aceves T, Lorea-Hernández FG, Ibarra-Manríquez G (2012) Los bosques de niebla de México: Conservación y restauración de su componente arbóreo. Ecosistemas 21:36–54

    Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New for 6:95–124. https://doi.org/10.1007/BF00120641

    Article  Google Scholar 

  • Hamrick JL, Murawski DA, Nason JD (1993) The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Vegetatio 107:281–297. https://doi.org/10.1007/BF00052230

    Article  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics. Sinauer Associates Inc

    Google Scholar 

  • Hedrick PW (2000) Genetics of populations. Jones and Barlett Publishers

    Google Scholar 

  • Herbert DN, Beaton MJ (1993) Methodologies for allozyme analysis using cellulose acetate electrophoresis. technical manual of cellulose acetate electrophoresis. Helena Laboratories

    Google Scholar 

  • Kappelle M (2006) Ecology and conservation of neotropical montane oak forests Ecological Studies. Springer

    Book  Google Scholar 

  • Lande R, Landweberg L, Dobson A (1999) Extinction risks from anthropogenic, ecological, and genetic factors. In: Landweber LF, Dobson AP (eds) Genetics and the extinction of species: DNA and the conservation of biodiversity. Princeton University Press, Princeton, pp 1–22

    Google Scholar 

  • Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst 27:237–277. https://doi.org/10.1146/annurev.ecolsys.27.1.237

    Article  Google Scholar 

  • Lobo J, Solís S, Fuchs EJ, Quesada M (2013) Individual and temporal variation in outcrossing rates and pollen flow patterns in Ceiba pentandra (Malvaceae: Bombacoidea). Biotropica 45:185–194. https://doi.org/10.1111/btp.12001

    Article  Google Scholar 

  • Marshall DR, Brown AHD (1975) Optimal sampling strategies in genetic conservation. In: Frankel OH, Hawkes JG (eds) Crop Genetic Resources for Today and Tomorrow. Cambridge University Press, pp 53–80

    Google Scholar 

  • Martínez-Icó M, Cetzal-Ix W, Noguera-Savelli E, Hernández-Juárez R (2015) Flora vascular de la comunidad de Bazom, Los Altos de Chiapas. México. Bot Sci 93(1):1–20. https://doi.org/10.17129/botsci.136

    Article  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106(949):283–292. https://doi.org/10.1086/282771

    Article  Google Scholar 

  • Neigel JE (2002) Is fst obsolete? Conserv Genet 3:167–173. https://doi.org/10.1023/A:1015213626922

    CAS  Article  Google Scholar 

  • Partida-Lara R, Eríquez PL, Vázquez-Pérez JR, de Pineda-Diez BE, Martínez-Ico M, Rangel-Salazar JL (2018) Pollination syndromes and interaction networks in hummingird assemblages in El Triunfo Biosphere Reserve, Chiapas. Mexico. J Trop Ecol 34(5):293–307. https://doi.org/10.1017/S0266467418000263

    Article  Google Scholar 

  • Peakall RP, Smouse E (2006) Genetic analysis in excel (GENALEX 6.5.1). population genetic software for teaching and research. Mol Ecol Notes 6:288–295. https://doi.org/10.1093/bioinformatics/bts460

    CAS  Article  Google Scholar 

  • Pérez-Salicrup D, Peñaloza-Guerrero C, Aguiar-Eleutério AA (2006) Regeneration of Styrax argenteus in natural forest and in plantations of Cupressus lindleyi in Michoacan, Mexico. New for 32:231–241. https://doi.org/10.1007/s11056-005-6104-x

    Article  Google Scholar 

  • Pither R, Shore JS, Kellman M (2003) Genetic diversity of the tropical tree Terminalia amazonia (Combretaceae) in naturally fragmented populations. Heredity 91:307–313. https://doi.org/10.1038/sj.hdy.6800299

    CAS  Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  Article  Google Scholar 

  • Ramírez-Marcial N, Ochoa-Gaona S, González-Espinosa M, Quintana-Ascencio PF (1998) Análisis florístico y sucesional en la estación biológica Cerro Huitepec, Chiapas, México. Acta Bot Mex 44:59–85. https://doi.org/10.21829/abm44.1998.806

    Article  Google Scholar 

  • Ramírez-Marcial N, González-Espinosa M, Williams-Linera G (2001) Anthropogenic disturbance and tree diversity in montane rain forests in Chiapas, Mexico. For Ecol Manag 154:311–326. https://doi.org/10.1016/S0378-1127(00)00639-3

    Article  Google Scholar 

  • Ramírez-Marcial N, Camacho-Cruz A, González-Espinosa M (2005) Potencial florístico para la restauración de bosques en Los Altos y Montañas del Norte de Chiapas. In: González-Espinosa M, Ramírez-Marcial N, Ruiz-Montoya L (eds) Diversidad biológica en Chiapas. Plaza y Valdés/ECOSUR/COCyTECH

    Google Scholar 

  • Ramírez-Marcial N, Camacho-Cruz A, González-Espinosa M (2008) Clasificación de grupos funcionales vegetales paa la restauración de Bosque Mesófilo de Montaña. In: Galindo-González J, Díaz-Fleischer F (eds) Sánchez-Velázquez LR. Ecología Manejo y Conservación de los Ecosistemas de montaña de México

    Google Scholar 

  • Ramírez-Marcial N, Camacho-Cruz A, Martínez-Icó M, Luna-Gómez A, Golicher D, González Espinosa M (2010) Árboles y arbustos de los bosques de montaña en Chiapas. El Colegio de la Frontera Sur

    Google Scholar 

  • Ramp JM, Collinge SK, Ranker TA (2006) Restoration genetics of the vernal pool endemic Lasthenia conjugens (Asteraceae). Conserv Genet 7:631–649. https://doi.org/10.1007/s10592-005-9052-2

    CAS  Article  Google Scholar 

  • Rehfeldt GE, Crookston NL, Sáenz-Romero C, Campbell EM (2012) North American vegetation model for land-use planning in a changing climate: a solution to large classification problems. Ecol Appl 22:119–141. https://doi.org/10.2307/41416748

    Article  PubMed  Google Scholar 

  • Rodrigues RR, Lima RAF, Gandolfi S, Nave AG (2009) On the restoration of high diversity forests: 30 years of experience in the Brazilian Atlantic Forest. Biol Conserv 142:1241–1251. https://doi.org/10.1016/j.biocon.2008.12.008

    Article  Google Scholar 

  • Rosas F, Quesada M, Lobo JA, Sork VL (2011) Effects of habitat fragmentation on pollen flow and genetic diversity of the endangered tropical tree Swietenia humilis (Meliaceae). Biol Conserv 144:3082–3088. https://doi.org/10.1016/j.biocon.2011.10.003

    Article  Google Scholar 

  • Rzedowski J (2006) Vegetación de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad

    Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32. https://doi.org/10.1111/j.1523-1739.1991.tb00384.x

    Article  Google Scholar 

  • Schlötterer C (2004) The evolution of molecular markers- Just a matter of fashion? Nat Rev Genet 5:63–69. https://doi.org/10.1038/nrg1249

    CAS  Article  PubMed  Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating relationships. Univ Kans Sci Bull 28:1409–1448

    Google Scholar 

  • Sokal RR, Rohlf FJ (2003) Biometry. The principles and practice of statistics in biological research. W. H Freeman and Company

    Google Scholar 

  • Sujii PS, Nagai ME, Zucchi MI, Brancalion PHS, James PMA (2019) A genetic approach for simulating persistence of reintroduced tree species populations in restored forest. Ecol Model 403:35–43. https://doi.org/10.1016/j.ecolmodel.2019.04.014

    Article  Google Scholar 

  • Swofford DL (2002) PAUP: phylogenetic analysis using parsimony. Sinauer Associates

    Google Scholar 

  • Tavera-Carreño M, Ramírez-Marcial N, González-Espinosa M, Navarrete-Gutiérrez DA (2019) Rasgos funcionales de especies arbóreas raras y abundantes en bosques de montaña del sur de México. Polibotanica 48:29–41. https://doi.org/10.18387/polibotanica.48.5

    Article  Google Scholar 

  • Thomas E, Jalonen R, Loo J, Boshier D, Gallo L, Cavers S, Bordács S, Smith P, Bozzano M (2014) Genetic considerations in ecosystem restoration using native tree species. Forest Ecol Manag 333:66–75. https://doi.org/10.1016/j.foreco.2014.07.015

    Article  Google Scholar 

  • Vellend M (2005) Species diversity and genetic diversity: parallel processes and correlated patterns. Am Nat 16:199–215. https://doi.org/10.1086/431318

    Article  Google Scholar 

  • Vellend M, Geber MA (2005) Connections between species diversity and genetic diversity. Ecol Lett 8:767–781. https://doi.org/10.1111/j.1461-0248.2005.00775.x

    Article  Google Scholar 

  • Villaseñor JL (2010) El bosque húmedo de montaña en México y sus plantas vasculares: catálogo florístico-taxonómico. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad

    Google Scholar 

  • White GM, Boshier DH, Powell W (2002) Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zucarrini. Proc Natl Acad Sci U S A 99:2038–2042. https://doi.org/10.1073/pnas.042649999

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Wolf JHD (2005) The response of epiphytes to anthropogenic disturbance of pine-oak forests in the highlands of Chiapas, Mexico. For Ecol Manag 212:376–393. https://doi.org/10.1016/j.foreco.2005.03.027

    Article  Google Scholar 

  • Wolf JHD, Flamenco A (2003) Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico. J Biogeogr 30:1689–1709. https://doi.org/10.1046/j.1365-2699.2003.00902.x

    Article  Google Scholar 

  • Yeh FH, O’Malley DM (1980) Enzyme variation in natural populations of Douglas-Fir, Pseudotsuga menziesii (Mirb.) Franco, from British Columbia. I: genetic variation patterns in coastal populations. Silvae Genet 29:83–92

    CAS  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418. https://doi.org/10.1016/0169-5347(96)10045-8

    CAS  Article  PubMed  Google Scholar 

  • Zucchi MI, Sujii PS, Mori GM, Viana JPG, Grando C, Silvestre EA, Schwarcz KD, Macrini MC, Bajay MM, Araújo FL, Siqueira MVBM, Alves-Pereira A, de Souza AP, Pinheiro JB, Rodrigues RR, Brancalion PHS (2017) Genetic diversity of reintroduced tree populations in restoration plantations of the Brazilian Atlantic Forest. Restor Ecol 26:694–701. https://doi.org/10.1111/rec.12620

    Article  Google Scholar 

Download references

Acknowledgements

We thank Pronatura Sur, A.C. for kindly granting access to the Reserva Ecológica Huitepec. We also thank the municipal authorities for granting access and permit to sample in the communally owned forests at Mitzitón and Bazom. This study was funded by the Consejo Nacional de Ciencia y Tecnología of Mexico through Grant FOMIX-CONACYT-CHIS 2006-CO6-44064. María Elena Sánchez-Salazar edited the English manuscript.

Funding

Consejo Nacional de Ciencia y Tecnología of Mexico through grant FOMIX-CONACYT-CHIS 2006-CO6-44064.

Author information

Authors and Affiliations

Authors

Contributions

Bárbara Cruz-Salazar carried out data analyses and wrote the first draft of the manuscript. Lorena Ruiz-Montoya proposed the research subject and supervised the laboratory and fieldwork; she also contributed to the writing of the first draft. Arbey Eugenio Gómez-Ruiz carried out field and laboratory work. Neptalí Ramírez-Marcial wrote sections of the manuscript and provided nursery plants. All the authors wrote, read, and approved the final manuscript.

Corresponding author

Correspondence to Lorena Ruiz-Montoya.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Consent to participate

Bárbara Cruz-Salazar, Lorena Ruiz-Montoya, Arbey Eugenio Gómez-Ruiz and Neptalí Ramírez-Marcial agree to participate as authors of the manuscript "Genetic variation in natural and nursery populations of Styrax magnus (Styracaceae) for the restoration of humid mountain forests in southern Mexico".

Consent for publication

All the authors of this research agree to publish our manuscript "Genetic variation in natural and nursery populations of Styrax magnus (Styracaceae) for the restoration of humid mountain forests in southern Mexico" in New Forests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cruz-Salazar, B., Ruiz-Montoya, L., Gómez-Ruiz, A.E. et al. Genetic variation in natural and nursery populations of Styrax magnus (Styracaceae) for the restoration of humid mountain forests in southern Mexico. New Forests 53, 721–734 (2022). https://doi.org/10.1007/s11056-021-09882-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-021-09882-x

Keywords

  • Chiapas
  • Ecological restoration
  • Enzymes
  • Genetic structure
  • Tree population