Skip to main content

Advertisement

Log in

Assessing tree height and density of a young forest using a consumer unmanned aerial vehicle (UAV)

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Accurate, cost-effective monitoring and management of young forests is important for future stand quality. There is a critical need for a rapid assessment tool for forest monitoring and management. This study uses a low-cost unmanned aerial vehicle (UAV) to complete a tree height and tree density assessment in a newly forested Chinese fir (Cunninghamia lanceolata (Lamb) Hook) planting (15 sample plots), Shunchang County, Fujian, China (1.12 ha). Images obtained from a Phantom4-Multispectral UAV were used to generate a digital surface model (DSM) with DJI Terra software (0.02 m spatial resolution). Based on the DSM, the individual trees were identified and the height of each corresponding tree was determined. The impacts of factors related to individual tree detection (ITD) and tree height accuracy were also analyzed. For the tree-level, the highest accuracy of ITD for Chinese fir was 98.93% (F-score = 98.93%). Remotely sensed individual tree heights produced an R2 value of 0.89, RMSE value of 0.22 m when compared to a field survey. At the stand-level, tree height assessment yielded R2 = 0.95, RMSE = 0.12 m, and tree density assessment yielded R2 = 0.99, RMSE = 48 tree ha−1. The results highlight that UAVs can successfully monitor forest parameters and hold great potential as a supplement or substitute tool in field inventory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Birdal AC, Avdan U, Türk T (2017) Estimating tree heights with images from an unmanned aerial vehicle. Geomat Nat Haz Risk 8:1144–1156

    Article  Google Scholar 

  • Brede B, Lau A, Bartholomeus H, Kooistra L (2017) Comparing RIEGL RiCOPTER UAV LiDAR derived canopy height and DBH with terrestrial LiDAR. Sensors 17:2371

    Article  PubMed Central  Google Scholar 

  • Bohlin J, Bohlin I, Jonzén J, Nilsson M (2017) Mapping forest attributes using data from stereophotogrammetry of aerial images and field data from the national forest inventory. Silva Fenn 51:1–18

    Article  Google Scholar 

  • Bohlin J, Wallerman J, Fransson SJE (2016) Deciduous forest mapping using change detection of multi-temporal canopy height models from aerial images acquired at leaf-on and leaf-off conditions. Scand J Forest Res 31:517–525

    Article  Google Scholar 

  • Chopping M, Moisen GG, Su L, Laliberte A, Rango A, Martonchik JV, Peters DPC (2008) Large area mapping of southwestern forest crown cover, canopy height, and biomass using the NASA Multiangle Imaging Spectro-Radiometer. Remote Sens Environ 112:2051–2063

    Article  Google Scholar 

  • Dash JP, Watt MS, Pearse GD, Heaphy M, Dungey HS (2017) Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. Isprs J Photogramm 131:1–14

    Article  Google Scholar 

  • Dempewolf J, Nagol J, Hein S, Thiel C, Zimmermann R (2017) Measurement of Within-Season tree height growth in a mixed forest stand using UAV imagery. Forests 8:231

    Article  Google Scholar 

  • Díaz-Varela R, de la Rosa R, León L, Zarco-Tejada P (2015) High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: Application in breeding trials. Remote Sens 7:4213–4232

    Article  Google Scholar 

  • Fawcett D, Fawcett D, Azlan B, Hill TC, Kho LK, Bennie J, Anderson K (2019) Unmanned aerial vehicle (UAV) derived structure-from-motion photogrammetry point clouds for oil palm (Elaeis guineensis) canopy segmentation and height estimation. Int J Remote Sens 40:7538–7560

    Article  Google Scholar 

  • Feduck C, McDermid G, Castilla G (2018) Detection of coniferous seedlings in UAV imagery. Forests 9:432

    Article  Google Scholar 

  • Forlani G, Dall Asta E, Diotri F, Cella UMD, Roncella R, Santise M (2018) Quality assessment of DSMs produced from UAV flights georeferenced with On-Board RTK positioning. Remote Sens 10:311

    Article  Google Scholar 

  • Forzieri G, Guarnieri L, Vivoni ER, Castelli F, Preti F (2009) Multiple attribute decision making for individual tree detection using high-resolution laser scanning. Forest Ecol Manag 258:2501–2510

    Article  Google Scholar 

  • Gardner TA, Barlow J, Araujo IS, Avila-Pires TC, Bonaldo AB, Costa JE, Esposito MC, Ferreira LV, Hawes J, Hernandez MI, Hoogmoed MS, Leite RN, Lo-Man-Hung NF, Malcolm JR, Martins MB, Mestre LA, Miranda-Santos R, Overal WL, Parry L, Peters SL, Ribeiro-Junior MA, Da SM, Da SMC, Peres CA (2008) The cost-effectiveness of biodiversity surveys in tropical forests. Ecol Lett 11:139–150

    Article  PubMed  Google Scholar 

  • Goodbody TRH, Coops NC, Hermosilla T, Tompalski P, Crawford P (2018) Assessing the status of forest regeneration using digital aerial photogrammetry and unmanned aerial systems. Int J Remote Sens 39:5246–5264

    Article  Google Scholar 

  • Gougeon FA (1995) A crown-following approach to the automatic delineation of individual tree crowns in high spatial resolution aerial images. Can J Remote Sens 21:274–284

    Article  Google Scholar 

  • Goutte C, Gaussier E (2005) A probabilistic interpretation of precision, recall and F-Score, with implication for evaluation. In: Proceedings of the 27th European Conference on IR Research, Santiago de Compostela, Spain, pp. 345–359

  • Guerra-Hernández J, Cosenza DN, Rodriguez LCE, Silva M, Tomé M, Díaz-Varela RA, González-Ferreiro E (2018) Comparison of ALS- and UAV(SfM)-derived high- density point clouds for individual tree detection in Eucalyptus plantations. Int J Remote Sens 15–16:5211–5235

    Article  Google Scholar 

  • Guerra-Hernández J, González-Ferreiro E, Monleón V, Faias S, Tomé M, Díaz-Varela R (2017) Use of multi-temporal UAV-derived imagery for estimating individual tree growth in pinus pinea stands. Forests 8:300

    Article  Google Scholar 

  • Guerra-Hernández J, Gonzalez-Ferreiro E, Sarmento A, Silva J, Nunes A, Correia AC, Fontes L, Tomé M, Diaz-Varela R (2016) Using high resolution UAV imagery to estimate tree variables in Pinus pinea plantation in Portugal. Forest Syst 25:16

    Article  Google Scholar 

  • Guimarães N, Pádua L, Marques P, Silva N, Peres E, Sousa JJ (2020) Forestry remote sensing from unmanned aerial vehicles: A review focusing on the data, processing and potentialities. Remote Sens 12:1046

    Article  Google Scholar 

  • Hamraz H, Contreras MA, Zhang J (2016) A robust approach for tree segmentation in deciduous forests using small-footprint airborne LiDAR data. Int J Appl Earth Obs 52:532–541

    Google Scholar 

  • Huuskonen S, Hynynen J (2006) Timing and intensity of precommercial thinning and their effects on the first commercial thinning in Scots pine stands. Silva Fenn 40

  • Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecasting 22:679–688

    Article  Google Scholar 

  • Iglhaut J, Cabo C, Puliti S, Piermattei L, Connor OJ, Rosette J (2019) Structure from motion photogrammetry in forestry: a review. Curr for Rep 5:155–168

    Google Scholar 

  • Imangholiloo M, Saarinen N, Markelin L, Rosnell T, Näsi R, Hakala T, Honkavaara E, Holopainen M, Hyyppä J, Vastaranta M (2019) Characterizing seedling stands using leaf-off and leaf-on photogrammetric point clouds and hyperspectral imagery acquired from unmanned aerial vehicle. Forests 10:415

    Article  Google Scholar 

  • Jensen J, Mathews A (2016) Assessment of image-based point cloud products to generate a bare earth surface and estimate canopy heights in a woodland ecosystem. Remote Sens 8:50

    Article  Google Scholar 

  • Jin C, Oh C, Shin S, Wilfred Njungwi N, Choi C (2020) A comparative study to evaluate accuracy on canopy height and density using UAV, ALS, and Fieldwork. Forests 11:241

    Article  Google Scholar 

  • Johansen K, Raharjo T, McCabe M (2018) Using multi-spectral UAV imagery to extract tree crop structural properties and assess pruning effects. Remote Sens 10:854

    Article  Google Scholar 

  • Khosravipour A, Skidmore AK, Isenburg M, Wang T, Hussin YA (2014) Generating pit-free canopy height models from airborne lidar. Photogramm Eng Rem S 80:863–872

    Article  Google Scholar 

  • Khosravipour A, Skidmore AK, Wang T, Isenburg M, Khoshelham K (2015) Effect of slope on treetop detection using a LiDAR Canopy Height Model. Isprs J Photogramm 104:44–52

    Article  Google Scholar 

  • Koch B, Heyder U, Weinacker H (2006) Detection of individual tree crowns in airborne lidar data. Photogramm Eng Rem S 72:357–363

    Article  Google Scholar 

  • Krause S, Sanders TGM, Mund J, Greve K (2019) UAV-based photogrammetric tree height measurement for intensive forest monitoring. Remote Sens 11:758

    Article  Google Scholar 

  • Kwong IHY, Fung T (2020) Tree height mapping and crown delineation using LiDAR, large format aerial photographs, and unmanned aerial vehicle photogrammetry in subtropical urban forest. Int J Remote Sens 41:5228–5256

    Article  Google Scholar 

  • Larsen M, Eriksson M, Descombes X, Perrin G, Brandtberg T, Gougeon FA (2011) Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions. Int J Remote Sens 32:5827–5852

    Article  Google Scholar 

  • Leckie D, Gougeon F, Hill D, Quinn R, Armstrong L, Shreenan R (2003) Combined high-density lidar and multispectral imagery for individual tree crown analysis. Can J Remote Sens 29:633–649

    Article  Google Scholar 

  • Lee J, Biging GS, Fisher JB (2016) An individual tree-based automated registration of aerial images to lidar data in a forested area. Photogramm Eng Rem S 82:699–710

    Article  Google Scholar 

  • Li W, Guo Q, Jakubowski MK, Kelly M (2012) A new method for segmenting individual trees from the lidar point cloud. Photogramm Eng Rem S 78:75–84

    Article  Google Scholar 

  • Lim K, Treitz P, Wulder M, St-Onge B, Flood M (2016) LiDAR remote sensing of forest structure. Prog Phys Geog 27:88–106

    Article  Google Scholar 

  • Lindberg E, Hollaus M (2012) Comparison of methods for estimation of stem volume, stem number and basal area from airborne laser scanning data in a hemi-boreal forest. Remote Sens 4:1004–1023

    Article  Google Scholar 

  • Lisein J, Pierrot-Deseilligny M, Bonnet S, Lejeune P (2013) A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery. Forests 4:922–944

    Article  Google Scholar 

  • Liu Y, Gong W, Xing Y, Hu X, Gong J (2019) Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery. Isprs J Photogramm 151:277–289

    Article  Google Scholar 

  • Lloyd CD, Atkinson PM (2002) Deriving DSMs from LiDAR data with kriging. Int J Remote Sens 23:2519–2524

    Article  Google Scholar 

  • Lu B, He Y (2017) Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland. Isprs J Photogramm 128:73–85

    Article  Google Scholar 

  • Meyer TH (2004) The discontinuous nature of kriging interpolation for digital terrain modeling. Cartogr Geogr Inf Sc 31:209–216

    Article  Google Scholar 

  • Miller E, Dandois J, Detto M, Hall J (2017) Drones as a tool for monoculture plantation assessment in the steepland tropics. Forests 8:168

    Article  Google Scholar 

  • Mitášová H, Hofierka J (1993) Interpolation by regularized spline with tension: II. Application to terrain modeling and surface geometry analysis. Math Geol 25:657–669

    Article  Google Scholar 

  • Mohan M, Silva C, Klauberg C, Jat P, Catts G, Cardil A, Hudak A, Dia M (2017) Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest. Forests 8:340

    Article  Google Scholar 

  • Näsi R, Honkavaara E, Lyytikäinen-Saarenmaa P, Blomqvist M, Litkey P, Hakala T, Viljanen N, Kantola T, Tanhuanpää T, Holopainen M (2015) Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level. Remote Sens 7:15467–15493

    Article  Google Scholar 

  • Panagiotidis D, Abdollahnejad A, Surový P, Chiteculo V (2017) Determining tree height and crown diameter from high-resolution UAV imagery. Int J Remote Sens 38:2392–2410

    Article  Google Scholar 

  • Persson H, Perko R (2016) Assessment of boreal forest height from WorldView-2 satellite stereo images. Remote Sens Lett 7:1150–1159

    Article  Google Scholar 

  • Popescu SC, Wynne R (2004) Seeing the trees in the forest. Photogramm Eng Rem S 5:589–604

    Article  Google Scholar 

  • Pouliot DA, King DJ, Bell FW, Pitt DG (2002) Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sens Environ 82:322–334

    Article  Google Scholar 

  • Puliti S, Solberg S, Granhus A (2019) Use of UAV photogrammetric data for estimation of biophysical properties in forest stands under regeneration. Remote Sens 11:233

    Article  Google Scholar 

  • Reder S, Waßermann L, Mund J (2019) UAV-based tree height estimation in dense tropical rainforest areas in Ecuador and Brazil. GI_Forum 1:47–59

    Article  Google Scholar 

  • Rosca S, Suomalainen J, Bartholomeus H, Herold M (2018) Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests. Interface Focus 8:20170038

    Article  PubMed  PubMed Central  Google Scholar 

  • Seifert E, Seifert S, Vogt H, Drew D, van Aardt J, Kunneke A, Seifert T (2019) Influence of drone altitude, image overlap, and optical sensor resolution on multi-view reconstruction of forest images. Remote Sens 11:1252

    Article  Google Scholar 

  • Selkowitz DJ, Green G, Peterson B, Wylie B (2012) A multi-sensor lidar, multi-spectral and multi-angular approach for mapping canopy height in boreal forest regions. Remote Sens Environ 121:458–471

    Article  Google Scholar 

  • Silva CA, Hudak AT, Vierling LA, Loudermilk EL, O’Brien JJ, Hiers JK, Jack SB, Gonzalez-Benecke C, Lee H, Falkowski MJ, Khosravipour A (2016) Imputation of individual longleaf pine (Pinus palustris Mill.) tree attributes from field and lidar data. Can J Remote Sens 42:554–573

    Article  Google Scholar 

  • Sokolova M, Japkowicz N, Szpakowicz S (2006) Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In: Proceedings of the 19th Australian Joint Conference on Artificial Intelligence. Springer Berlin Heidelberg, Hobart, Australia, pp. 1015–1021

  • Su Y, Ma Q, Guo Q (2017) Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery. Int J Digit Earth 10:307–323

    Article  Google Scholar 

  • Swinfield T, Lindsell JA, Williams JV, Harrison RD, Agustiono H, Gemita E, Schönlieb CB, Coomes DA (2019) Accurate measurement of tropical forest canopy heights and aboveground carbon using structure from motion. Remote Sens 11:928

    Article  Google Scholar 

  • Tang L, Shao G (2015) Drone remote sensing for forestry research and practices. J Forestry Res 26:791–797

    Article  Google Scholar 

  • Tian J, Wang L, Li X, Gong H, Shi C, Zhong R, Liu X (2017) Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest. Int J Appl Earth Obs 61:22–31

    Google Scholar 

  • Tu Y, Johansen K, Phinn S, Robson A (2019) Measuring canopy structure and condition using multi-spectral UAS imagery in a horticultural environment. Remote Sens 11:269

    Article  Google Scholar 

  • Tu Y, Phinn S, Johansen K, Robson A, Wu D (2020) Optimising drone flight planning for measuring horticultural tree crop structure. Isprs J Photogramm 160:83–96

    Article  Google Scholar 

  • Van Leeuwen M, Coops NC, Wulder MA (2010) Canopy surface reconstruction from a LiDAR point cloud using hough transform. Remote Sens Lett 1:125–132

    Article  Google Scholar 

  • Wallace L, Lucieer A, Malenovský Z, Turner D, Vopěnka P (2016) Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests 7:62

    Article  Google Scholar 

  • Wang Y, Lehtomäki M, Liang X, Pyörälä J, Kukko A, Jaakkola A, Liu J, Feng Z, Chen R, Hyyppä J (2019) Is field-measured tree height as reliable as believed – a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest. Isprs J Photogramm 147:132–145

    Article  Google Scholar 

  • Wu D, Johansen K, Phinn S, Robson A, Tu Y (2020) Inter-comparison of remote sensing platforms for height estimation of mango and avocado tree crowns. Int J Appl Earth Obs 89:102091

    Google Scholar 

  • Wulder M (1998) Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Prog Phys Geog 22:449–476

    Article  Google Scholar 

  • Wulder M, Niemann KO, Goodenough DG (2000) Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery. Remote Sens Environ 73:103–114

    Article  Google Scholar 

  • Xue J, Su B (2017) Significant remote sensing vegetation indices: a review of developments and applications. J Sensors 2017:1–17

    Article  CAS  Google Scholar 

  • Yu X, Hyyppä J, Holopainen M, Vastaranta M (2010) Comparison of area-based and individual tree-based methods for predicting plot-level forest attributes. Remote Sens 2:1481–1495

    Article  Google Scholar 

  • Yu X, Hyyppä J, Karjalainen M, Nurminen K, Karila K, Vastaranta M, Kankare V, Kaartinen H, Holopainen M, Honkavaara E, Kukko A, Jaakkola A, Liang X, Wang Y, Hyyppä H, Katoh M (2015) Comparison of laser and stereo optical, SAR and InSAR point clouds from air-and space-borne sources in the retrieval of forest inventory attributes. Remote Sens 7:15933–15954

    Article  Google Scholar 

  • Zarco-Tejada PJ, Diaz-Varela R, Angileri V, Loudjani P (2014) Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur J Agron 55:89–99

    Article  Google Scholar 

  • Zhang G, Ganguly S, Nemani RR, White MA, Milesi C, Hashimoto H, Wang W, Saatchi S, Yu Y, Myneni RB (2014) Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data. Remote Sens Environ 151:44–56

    Article  Google Scholar 

  • Zhang J, Hu J, Lian J, Fan Z, Ouyang X, Ye W (2016) Seeing the forest from drones: testing the potential of lightweight drones as a tool for long-term forest monitoring. Biol Conserv 198:60–69

    Article  Google Scholar 

  • Zhang J, Huang S, He F (2015) Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. P Natl Acad Sci USA 112:4009–4014

    Article  CAS  Google Scholar 

  • Zimmerman D, Pavlik C, Ruggles A, Armstrong MP (1999) An experimental comparison of ordinary and universal kriging and inverse distance weighting. Math Geol 31:375–390

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the science and technology major project of Fujian province, China (Grant number 2018NZ0101), the National Natural Science Foundation of China (Grant numbers 31770760) and the scholarship program of China Scholarship Council (Grant number 201908350124 and 202008350151). We wish to thank Dr. Elena Mikhailova for her assistance in review and editing. We also thank the anonymous reviewers and editors for their professional comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kunyong Yu or Jian Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Fig. 11
figure 11

Workflow of tree height extraction using ModelBuilder. The dark blue color represents the input file; the light blue color represents the input parameters; the yellow color represents the ArcGIS tool used in the model; the light green color represents the intermediate data; the dark green color represents the output result

Appendix 2

Fig. 12
figure 12

A visual modeling environment for tree height estimation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Lin, L., Post, C.J. et al. Assessing tree height and density of a young forest using a consumer unmanned aerial vehicle (UAV). New Forests 52, 843–862 (2021). https://doi.org/10.1007/s11056-020-09827-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-020-09827-w

Keywords

Navigation