Light- and nutrient-related relationships in mixed plantations of Eucalyptus and a high diversity of native tree species

Abstract

Mixed plantations composed of Eucalyptus intercropped with a high diversity of native tree species are a promising option for combining biodiversity recovery with wood production during forest landscape restoration. The viability of this approach relies not only on its potential to offset implementation costs but also on the capacity of native trees to perform well when intercropped with Eucalyptus. We investigated competition for light and nutrients in these mixed plantations in the Atlantic Forest of Brazil. We compared (1) Eucalyptus monocultures, (2) plantations composed of native species for restoration, and (3) mixed plantations intercropping Eucalyptus with native tree species, in which Eucalyptus replaced native pioneers. We found no evidence of competition for nutrients or facilitation. Native species plots intercepted more Photosynthetically Active Radiation than Eucalyptus monocultures or mixtures. Our results add to the previous studies on these experiments and altogether suggest that well-managed mixed plantations of Eucalyptus and a high diversity of native tree species are a viable silvicultural solution for offsetting the costs of forest landscape restoration in the tropics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abreu MD, Andrade JD, Falcão ADA (2006) Análise química de resíduos sólidos para monitoramento e estudos agroambientais. Instituto Agronômico, Campinas

    Google Scholar 

  2. Almeida AC, Soares JV, Landsberg JJ, Rezende GD (2007) Growth and water balance of Eucalyptus grandis hybrid plantations in Brazil during a rotation for pulp production. For Ecol Manag 251:10–21. https://doi.org/10.1016/j.foreco.2007.06.009

    Article  Google Scholar 

  3. Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Z. 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  4. Amazonas NT, Forrester DI, Oliveira RS, Brancalion PHS (2018a) Combining Eucalyptus wood production with the recovery of native tree diversity in mixed plantings: implications for water use and availability. For Ecol Manag 418:34–40. https://doi.org/10.1016/j.foreco.2017.12.006

    Article  Google Scholar 

  5. Amazonas NT, Forrester DI, Silva CC et al (2018b) High diversity mixed plantations of Eucalyptus and native trees: an interface between production and restoration for the tropics. For Ecol Manag 417:247–256. https://doi.org/10.1016/j.foreco.2018.03.015

    Article  Google Scholar 

  6. Barberi A, Carneiro MAC, Moreira FMS, Siqueira JO (1998) Nodulação em Leguminosas florestais em viveiros no sul de Minas Gerais. Cerne 4:145–153

    Google Scholar 

  7. Binkley D, Dunkin KA, DeBell D, Ryan MG (1992) Production and nutrient cycling in mixed plantations of Eucalyptus and Albizia in Hawaii. For Sci 38:393–408

    Google Scholar 

  8. Binkley D, Senock R, Bird S, Cole TG (2003) Twenty years of stand development in pure and mixed stands of Eucalyptus saligna and nitrogen-fixing Facaltaria moluccana. For Ecol Manag 182:93–102. https://doi.org/10.1016/S0378-1127(03)00028-8

    Article  Google Scholar 

  9. Bouillet J-P, Laclau J-P, Gonçalves JLM, Voigtlaender M et al (2013) Eucalyptus and Acacia tree growth over entire rotation in single- and mixed-species plantations across five sites in Brazil and Congo. For Ecol Manag 301:89–101

    Article  Google Scholar 

  10. Bouma D (1983) Diagnosis of mineral deficiencies using plant tests. In: Läuchli A, Bieleski RL (eds) Inorganic plant nutrition. Springer, Berlin, pp 120–146

    Google Scholar 

  11. Canosa GA, Faria SM, Moraes LFD (2012) Leguminosas florestais da Mata Atlântica brasileira fixadoras de nitrogênio atmosférico. Comun Técnico - Empres Brasleira Pesqui Agropecuária 12

  12. Carvalho PER (2006) Circular Técnica 124 - Araribá-Amarelo. EMBRAPA Florestas, Colombo-PR

    Google Scholar 

  13. Claessen MEC (1997) Manual de métodos de análise de solo. Embrapa Solos-Documentos (INFOTECA-E), Rio de Janeiro

    Google Scholar 

  14. de Souza LAG (2010) Levantamento da habilidade nodulífera e fixação simbiótica de n2 nas fabaceae da região amazônica. Enciclopédia Biosf 6:1–11

    Google Scholar 

  15. de Faria SM, Franco AA (2002) Identificação de Bactérias Eficientes na Fixação Biológica de Nitrogênio para Espécies Leguminosas Arbóreas. Embrapa Doc 158

  16. de Faria SM, Uchôas ES (2007) Indicação de estirpes de rizóbio eficientes na fixação biológica de nitrogênio para espécies de uso múltiplo - Atualização ano base 2006, 1st edn. Embrapa Agrobiologia, Seropédica

    Google Scholar 

  17. de Faria SM, Franco AA, de Jesus RM et al (1984) New nodulating legume trees from south-east Brazil. New Phytol 98:317–328. https://doi.org/10.1111/j.1469-8137.1984.tb02742.x

    Article  Google Scholar 

  18. de Faria SM, de Lima HC, Franco AA et al (1987) Nodulation of legume trees from South East Brazil. Plant Soil 99:347–356. https://doi.org/10.1007/BF02370880

    Article  Google Scholar 

  19. de Souza Moreira FM, da Silva MF, de Faria SM (1992) Occurrence of nodulation in legume species in the Amazon region of Brazil. New Phytol 121:563–570. https://doi.org/10.1111/j.1469-8137.1992.tb01126.x

    Article  Google Scholar 

  20. Decagon Devices (2014) AccuPAR PAR/LAI Ceptometer Model LP-80—operator’s manual. Decagon Devices, Inc., pp 1–78

  21. Epron D, Nouvellon Y, Mareschal L et al (2013) Partitioning of net primary production in Eucalyptus and Acacia stands and in mixed-species plantations: two case-studies in contrasting tropical environments. For Ecol Manag 301:102–111. https://doi.org/10.1016/j.foreco.2012.10.034

    Article  Google Scholar 

  22. Ferez APC, Campoe OC, Mendes JCT, Stape JL (2015) Silvicultural opportunities for increasing carbon stock in restoration of Atlantic forests in Brazil. For Ecol Manag 350:40–45. https://doi.org/10.1016/j.foreco.2015.04.015

    Article  Google Scholar 

  23. Forrester DI (2015) Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season. Tree Physiol 35:289–304. https://doi.org/10.1093/treephys/tpv011

    Article  PubMed  Google Scholar 

  24. Forrester D, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manag 233:211–230. https://doi.org/10.1016/j.foreco.2006.05.012

    Article  Google Scholar 

  25. Forrester DI, Lancaster K, Collopy JJ et al (2012) Photosynthetic capacity of Eucalyptus globulus is higher when grown in mixture with Acacia mearnsii. Trees 26:1203–1213. https://doi.org/10.1007/s00468-012-0696-5

    Article  CAS  Google Scholar 

  26. Forrester DI, Ammer C, Annighöfer PJ et al (2018) Effects of crown architecture and stand structure on light absorption in mixed and monospecific Fagus sylvatica and Pinus sylvestris forests along a productivity and climate gradient through Europe. J Ecol. https://doi.org/10.1111/1365-2745.12803

    Article  Google Scholar 

  27. Gonçalves C, Goi S, Neto J (1999) Crescimento E Nodulação De Inga Marginata Em Resposta À Adição De Nitrogênio, Fósforo E Inoculação Com Rizóbio. Floresta e Ambient 6:118–126

    Google Scholar 

  28. Gross E, Cordeiro L, Caetano FH (2002) Nodule ultrastructure and initial growth of Anadenanthera peregrina (L.) Speg. var. falcata (Benth.) Altschul plants infected with rhizobia. Ann Bot 90:175–183. https://doi.org/10.1093/aob/mcf184

    Article  PubMed Central  Google Scholar 

  29. Jose S, Williams R, Zamora D (2006) Belowground ecological interactions in mixed-species forest plantations. For Ecol Manag 233:231–239. https://doi.org/10.1016/j.foreco.2006.05.014

    Article  Google Scholar 

  30. Kelty MJ, Cameron IR (1995) Plot designs for the analysis of species interactions in mixed stands. Commonw For Rev 74:322–332

    Google Scholar 

  31. Köppen W (1936) Das geographische System der Klimate. Handbuch der Klimatologie. In: Köppen W, Geiger R (eds) Handbuch der Klimatologie. Gerbrüder Bornträger, Berlin, pp 1–44

    Google Scholar 

  32. Laclau JP, Almeida JCR, Gonalves JLM et al (2009) Influence of nitrogen and potassium fertilization on leaf lifespan and allocation of above-ground growth in Eucalyptus plantations. Tree Physiol 29:111–124. https://doi.org/10.1093/treephys/tpn010

    Article  PubMed  CAS  Google Scholar 

  33. le Maire G, Nouvellon Y, Christina M et al (2013) Tree and stand light use efficiencies over a full rotation of single- and mixed-species Eucalyptus grandis and Acacia mangium plantations. For Ecol Manag 288:31–42. https://doi.org/10.1016/j.foreco.2012.03.005

    Article  Google Scholar 

  34. Malavolta E, Vitti GC, de Oliveira SA (1997) Avaliação do estado nutricional das plantas: principios e aplicações. Potafós, Piracicaba

    Google Scholar 

  35. Menalled FD, Kelty MJ, Ewel JJ (1998) Canopy development in tropical tree plantations: a comparison of species mixture and monoculture. For Ecol Manag 104:249–263. https://doi.org/10.1016/S0378-1127(97)00255-7

    Article  Google Scholar 

  36. Nouvellon Y, Laclau JP, Epron D et al (2012) Production and carbon allocation in monocultures and mixed-species plantations of Eucalyptus grandis and Acacia mangium in Brazil. Tree Physiol 32:680–695. https://doi.org/10.1093/treephys/tps041

    Article  PubMed  CAS  Google Scholar 

  37. Oliver CD, Larson BC (1996) Forest stand dynamics. Wiley, New York

    Google Scholar 

  38. Paula RR, Bouillet J-P, Ocheuze Trivelin PC et al (2015) Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest. Soil Biol Biochem 91:99–108. https://doi.org/10.1016/j.soilbio.2015.08.017

    Article  CAS  Google Scholar 

  39. Pinheiro J, Bates D, DebRoy S et al (2016) Linear and nonlinear mixed effects models

  40. Poorter L (1999) Growth responses of 15 rain forest tree species to a light gradient; the relative importance of morphological and physiological traits. Funct Ecol 13:396–410. https://doi.org/10.1046/j.1365-2435.1999.00332.x

    Article  Google Scholar 

  41. Purves DW, Pacala SW (2008) Predictive models of forest dynamics. Science 320:1452–1453. https://doi.org/10.1126/science.1155359

    Article  PubMed  CAS  Google Scholar 

  42. R Core Team (2016) R: a language and environment for statistical computing. R Core Team, Vienna

    Google Scholar 

  43. Raij BV, Andrade JC, Cantarella H, Quaggio JA (2001) Análise química para avaliação da fertilidade do solo: Instituto Agronômico. Instituto Agronômico, Campinas

    Google Scholar 

  44. Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30:1192–1208. https://doi.org/10.1093/treephys/tpq035

    Article  PubMed  Google Scholar 

  45. Rocha JHT (2014) Reflexos do manejo de resíduos florestais na produtividade, nutrição e fertilidade do solo em plantações de Eucalyptus grandis. University of São Paulo, São Paulo

    Google Scholar 

  46. Santiago LS, Goldstein G (2016) Is photosynthesis nutrient limited in tropical trees? In: Goldstein G, Santiago L (eds) Tropical tree physiology. Springer, Cham, pp 299–315

    Google Scholar 

  47. Sapijanskas J, Paquette A, Potvin C et al (2014) Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95:2479–2492. https://doi.org/10.1890/13-1366.1

    Article  Google Scholar 

  48. Sentelhas PC, Marin FR, Ferreira AS, Sá EJS (2013) Banco de dados climáticos do Brasil. Município de Linhares, ES. http://www.bdclima.cnpm.embrapa.br/resultados/balanco.php?UF=&COD=54

  49. Sorreano MCM, Rodrigues RR, Boaretto AE (2012) Guia de nutrição para espécies florestais nativas. Oficina de Textos, São Paulo

    Google Scholar 

  50. Sprent JI, Parsons R (2000) Nitrogen fixation in legume and non-legume trees. Field Crop Res 65:183–196. https://doi.org/10.1016/S0378-4290(99)00086-6

    Article  Google Scholar 

  51. Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, New York

    Google Scholar 

Download references

Acknowledgements

We would like to thank Fibria Celulose S.A., Suzano Papel e Celulose S.A. and Organização de Conservação da Terra for their important collaboration; the Atlantic Forest Restoration Pact; Vanessa Moreno, Ulysse Gaudare, Nara Vogado and many others for their help on the field and sample processing. We thank the financial support from the São Paulo Research Foundation—FAPESP (Grant #2013/50718-5, Grant #2015/23957-4, Grant #2014/02070-9, Grant #2016/07498-2 and Grant #2018/21338-3; and from the National Council for Scientific and Technological Development—CNPq (Grant #304817/2015-5). We also thank editors and anonymous reviewers for helpful comments on previous versions of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nino Tavares Amazonas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Fig. 4 and Tables 3, 4, 5, 6, 7, 8, 9 and 10.

Fig. 4
figure4

Location of measurement points (stars) for the assessment of Photosynthetically Active Radiation within effective plots (line)

Table 3 Soil texture of the Aracruz-ES and Mucuri-BA experimental sites, in the Atlantic Forest of Brazil
Table 4 Soil chemical analysis of the Aracruz-ES and Mucuri-BA experimental sites, in the Atlantic Forest of Brazil
Table 5 List of species planted in each experimental site
Table 6 Parameter estimates (intercept) and standard error (SE) for fixed and random effects of models predicting the diameter of Eucalyptus as a function of the Neighborhood Index of nitrogen-fixing tree species within different radii (A, B, C and D)
Table 7 Mean nutrient concentration in wood and foliage of non-pioneer species native from the Atlantic Forest of Southeastern Brazil intercropped with native pioneer species in restoration plantations (NAT) or intercropped with Eucalyptus in mixed plantations (MIX)
Table 8 Mean nutrient concentration in wood and foliage of Eucalyptus planted in monocultures (EUC) or in mixed plantations intercropped with 30 non-pioneer species native of the Atlantic Forest of Southeastern Brazil (MIX)
Table 9 Mean nutrient content (per tree) in wood and foliage biomass of non-pioneer species native from the Atlantic Forest of Southeastern Brazil intercropped with pioneer native species in restoration plantations (NAT) or intercropped with Eucalyptus in mixed plantations (MIX)
Table 10 Mean nutrient content (per tree) in wood and foliage biomass of Eucalyptus in monoculture (EUC) or intercropped with non-pioneer species native from the Atlantic Forest of Southeastern Brazil in mixed plantations (MIX)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amazonas, N.T., Forrester, D.I., Silva, C.C. et al. Light- and nutrient-related relationships in mixed plantations of Eucalyptus and a high diversity of native tree species. New Forests (2021). https://doi.org/10.1007/s11056-020-09826-x

Download citation

Keywords

  • Competition
  • Complementarity
  • Facilitation
  • Forest landscape restoration
  • High diversity mixed plantation
  • Tropical forest restoration