Skip to main content

The influence of scion donor tree age on the growth and morphogenesis of Siberian stone pine grafts

Abstract

The influence of scions donor tree age on the morphological variability of needles, shoots, and branching pattern was studied in 7-year-old grafted scions of Siberian stone pine (Pinus sibirica Du Tour). We analyzed clones of four age groups: seedlings (4–7 years), young trees (38–62 years), mature trees (238–376 years), and old trees (549–700 years). The results showed that during the first 7 years after grafting, the age of the scion donor tree greatly affects branching patterns and leaf morphology of grafted trees. The age of the scion donor tree also significantly affects the growth of grafts in length, albeit to a lesser extent. Grafts derived from seedlings, young, mature, and old trees had different ratios of shoot elongation and branching: weak growth and abundant branching, strong growth and abundant branching, strong growth and medium branching, weak growth and branching, respectively. The degree of needle xeromorphy, the level of apical dominance, and the number of epicormic buds increased significantly with the age of scion donor trees. Premature (late summer and autumn) growth of dormant buds was typical only for grafts derived from seedlings and, to a lesser extent, from young trees. The closer the scion donor tree is to the ontogenetic growth peak, the more elongated and abundant the branching of the grafts derived from it.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdul-Hamid H, Mencuccini M (2008) Age and size related changes in growth of Acer pseudoplatanus and Fraxinus excelsior species. Am J Plant Physiol 3(4):137–153. https://doi.org/10.3923/ajpp.2008.137.153

    Article  Google Scholar 

  2. Abdul-Hamid H, Mencuccini M (2009) Age- and size-related changes in physiological characteristics and chemical composition of Acer pseudoplatanus and Fraxinus excelsior trees. Tree Physiol 29:27–38. https://doi.org/10.1093/treephys/tpn001

    Article  PubMed  Google Scholar 

  3. Apple M, Tiekotter K, Snow M, Young J, Soeldner A, Phillips D, Tingey D, Bond BJ (2002) Needle anatomy changes with increasing tree age in Douglas-fir. Tree Physiol 22:129–136. https://doi.org/10.1093/treephys/22.2-3.129

    Article  PubMed  Google Scholar 

  4. Bolstad PV, Libby WJ (1982) Comparisons of radiata pine cuttings of hedge and tree-form origin after seven growing seasons. Silvae Genetica 31:9–13

    Google Scholar 

  5. Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330:612–616. https://doi.org/10.1126/science.1191078

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Bond BJ, Czarnomski NM, Cooper C, Day ME, Greenwood MS (2007) Developmental decline in height growth in Douglas fir. Tree Physiol 27:441–453. https://doi.org/10.1093/treephys/27.3.441

    Article  PubMed  Google Scholar 

  7. Boratyńska K, Jasińska AK, Ciepłuchb E (2008) Effect of tree age on needle morphology and anatomy of Pinus uliginosa and Pinus sylvestris—species-specific character separation during ontogenesis. Flora 203:617–626

    Article  Google Scholar 

  8. Cline MG, Harrington CA (2007) Apical dominance an apical control in multiple flushing of temperate woody species. Can J For Res 37:74–83. https://doi.org/10.1139/x06-218

    Article  Google Scholar 

  9. Day ME, Greenwood MS (2011) Regulation of ontogeny in temperate conifers. In: Meinzer FC, Dawson T, Lachenbruch B (eds) Size- and age-related changes in tree structure and function. Springer, Dordrecht, pp 91–232

    Chapter  Google Scholar 

  10. Day ME, Greenwood MS, White AS (2001) Age-related changes in foliar morphology and physiology in red spruce and their influence on declining photosynthetic rates and productivity with tree age. Tree Physiol 21:1195–1204. https://doi.org/10.1093/treephys/21.16.1195

    CAS  Article  PubMed  Google Scholar 

  11. Domec JC, Lachenbruch B, Meinzer FC, Woodruff DR, Warren JM, McCulloh KA (2008) Maximum height in a conifer is associated with conflicting requirements for xylem design. Proc Natl Acad Sci USA 105:12069–12074. https://doi.org/10.1073/pnas.0710418105

    Article  PubMed  Google Scholar 

  12. Esau K (1977) Anatomy of seed plants, 2nd edn. Wiley, Hoboken

    Google Scholar 

  13. Fink VS (1980) Anatomische Untersuchungen über das Vorkommen von Sproß- und Wurzelanlagen im Stammbereich von Laub- und Nadelbäumen. I. Proventive Anlagen. Allg Forst Jagdztg 151:160–180

    Google Scholar 

  14. Goroshkevich SN (2000) Breeding of Siberian stone pine as a nut-bearing species. Lesnoe hozyajstvo (Forestry) 4:25–27 (in Russian)

    Google Scholar 

  15. Goroshkevich SN, Velisevich SN (1996) Structure and development of the secondary crown elements in the Siberian stone pine. Ontogenez (Russ J Dev Biol) 27(1):53–61 (in Russian with English abstract)

    Google Scholar 

  16. Greenwood MS (1984) Phase change in loblolly pine: shoot development as a function of age. Plant Physiol 61:518–522

    Article  Google Scholar 

  17. Greenwood M, Hooper CA, Hutchison KW (1989) Maturation in larch. I. Effect of age on shoot growth, foliar characteristics and DNA methylation. Plant Physiol 90:406–412

    CAS  Article  Google Scholar 

  18. Greenwood MS, Ward MH, Day ME, Adams SL, Bond BJ (2008) Age-related trends in red spruce foliar plasticity in relation to declining productivity. Tree Physiol 28:225–232. https://doi.org/10.1093/treephys/28.2.225

    CAS  Article  PubMed  Google Scholar 

  19. Greenwood MS, Day ME, Schatz J (2010) Separating the effects of tree size and meristem maturation on shoot development of grafted scions of red spruce (Picea rubens Sarg.). Tree Physiol 30(4):459–468. https://doi.org/10.1093/treephys/tpq004

    Article  PubMed  Google Scholar 

  20. Hallé F, Oldeman RA, Tomlinson PB (1978) Tropical trees and forests: an architectural analysis. Springer, Berlin

    Book  Google Scholar 

  21. Hopkins WG, Hüner NPA (2008) Introduction to plant physiology, 4th edn. Wiley, Hoboken

    Google Scholar 

  22. Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138:4117–4129. https://doi.org/10.1242/dev.063511

    CAS  Article  PubMed  Google Scholar 

  23. Husen A, Pal M (2006) Variation in shoot anatomy and rooting behaviour of stem cuttings in relation to age of donor plants in teak (Tectona grandis Linn. f.). New For 31:57–73. https://doi.org/10.1007/s11056-004-6794-5

    Article  Google Scholar 

  24. Hutchison KW, Sherman CD, Weber J, Smith SS, Singer PB, Greenwood MS (1990) Maturation in larch. II. Effects of age on photosynthesis and gene expression in developing foliage. Plant Physiol 94:1308–1315. https://doi.org/10.1104/pp.94.3.1308

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Ishii H (2011) How do changes in leaf/shoot morphology and crown architecture affect growth and physiological function of large, old trees? In: Meinzer FC, Dawson T, Lachenbruch B (eds) Size- and age-related changes in tree structure and function. Springer, Dordrecht, pp 215–232

    Chapter  Google Scholar 

  26. Ishii HT, Ford ED, Kennedy MC (2007) Physiological and ecological implications of adaptive reiteration as a mechanism for crown maintenance and longevity. Tree Physiol 27:455–462. https://doi.org/10.1093/treephys/27.3.455

    Article  PubMed  Google Scholar 

  27. Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limit to tree height. Nature 428:851–854. https://doi.org/10.1038/nature02417

    CAS  Article  PubMed  Google Scholar 

  28. Kozlowski TT (1971) Growth and development of trees. Academic Press, New York

    Google Scholar 

  29. Meier AR, Saunders MR, Michler CH (2012) Epicormic buds in trees: a review of bud establishment, development and dormancy release. Tree Physiol 32:565–584. https://doi.org/10.1093/treephys/tps040

    Article  PubMed  Google Scholar 

  30. Mencuccini M, Martinez-Vilalta J, Abdul-Hamid H, Vanderklein D (2007) Evidence for age- and size-mediated controls of tree growth from grafting studies. Tree Physiol 27(3):463–473. https://doi.org/10.1093/treephys/27.3.463

    Article  PubMed  Google Scholar 

  31. Mencuccini M, Hölttä T, Martinez-Vilalta J (2011) Comparative criteria for models of the vascular transport system of tall trees. In: Meinzer FC, Dawson T, Lachenbruch B (eds) Size- and age-related changes in tree structure and function. Springer, Dordrecht, pp 309–339

    Chapter  Google Scholar 

  32. Mencuccini M, Onate M, Penuelas J, Rico L, Munne-Bosch S (2014) No signs of meristem senescence in old Scots pine. J Ecol 102(3):555–565. https://doi.org/10.1111/1365-2745.12219

    CAS  Article  Google Scholar 

  33. Menzies MI, Klomp BK (1988) Effects of parent age on growth and form of cuttings. In: Menzies MI, Aimers JP, Whitehouse LJ (eds) Workshop on growing radiata pine from cuttings, pp 18–41, May 5–7, Ministry of Forestry (New Zealand), Rotorua, FRI Bulletin No. 135

  34. Menzies MI, Klomp BK, Holden DG (1991) Optimal physiological age of propagules for use in clonal forestry. In: Miller JT (ed) Clonal forestry workshop, pp 142–145, 1–2 May 1989, Ministry of Forestry (New Zealand), Rotorua, FRI Bulletin No. 160

  35. Millet J, Bouchard A (2003) Architecture of silver maple and its response to pruning near the power distribution network. Can J For Res 33:726–739. https://doi.org/10.1139/X02-206

    Article  Google Scholar 

  36. Nicolini E, Caraglio Y, Pélissier R, Leroy C, Roggy JC (2003) Epicormic branches: a growth indicator for the tropical forest tree, Dicorynia guianensis Amshoff (Caesalpiniaceae). Ann Bot 92:97–105. https://doi.org/10.1093/aob/mcg119

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nikolaeva SA, Velisevich SN, Savchuk DA (2011) Ontogeny of Pinus sibirica in the southeast of the West Siberian Plain. J Sib Fed Univ Biol 4:3–22 (in Russian with English abstract)

    Article  Google Scholar 

  38. Poethig RS (2013) Vegetative phase change and shoot maturation in plants. Curr Top Dev Biol 105:125–152. https://doi.org/10.1016/B978-0-12-396968-2.00005-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Ritchie GA, Keeley JW (1994) Maturation in Douglas fir: I. Changes in stem, branch and foliage characteristics associated with ontogenetic ageing. Tree Physiol 14:1245–1259. https://doi.org/10.1093/treephys/14.11.1245

    CAS  Article  PubMed  Google Scholar 

  40. Robert ML, Juárez-Gómez J, Chaires-Pacheco M, Peña-Ramírez YJ (2019) Successive grafting confers juvenility traits to adult Spanish red cedar (Cedrela odorata Linnaeus): a tool for the rescue of selected materials. New For 51(2):335–337. https://doi.org/10.1007/s11056-019-09736-7

    Article  Google Scholar 

  41. Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant Cell Environ 29:367–381. https://doi.org/10.1111/j.1365-3040.2005.01478.x

    Article  PubMed  Google Scholar 

  42. Saveyn A, Steppe K, Lemeur R (2007) Daytime depression in tree stem CO2 efflux rates: is it caused by low stem turgor pressure? Ann Bot 99:477–485. https://doi.org/10.1093/aob/mcl268

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Titov EV (2014) Factors of seed orchard growing of Siberian stone pine. Hvojnye boreal’noj zony (Coniferous of boreal zone) 32(3–4):66–70 (in Russian)

    Google Scholar 

  44. Vanderklein D, Martínez-Vilalta J, Lee S, Mencuccini M (2007) Plant size, not age, regulates growth and gas exchange in grafted Scots pine trees. Tree Physiol 27:71–79. https://doi.org/10.1093/treephys/27.1.71

    CAS  Article  PubMed  Google Scholar 

  45. Velisevich SN, Popov AV, Goroshkevich SN (2018) Crown structure of vegetative progeny of young and mature generative trees of the Siberian stone pine. Sib J For Sci 6:69–79. https://doi.org/10.15372/SJFS20180606(in Russian with English abstract)

    Article  Google Scholar 

  46. Wendling I, Trueman SJ, Xavier A (2014) Maturation and related aspects in clonal forestry. Part II: reinvigoration, rejuvenation and juvenility maintenance. New For 45:473–486. https://doi.org/10.1007/s11056-014-9415-y

    Article  Google Scholar 

  47. Woodruff DR, Meinzer FC, Lachenbruch B, Johnson DM (2008) Coordination of leaf structure and gas exchange along a height gradient in a tall conifer. Tree Physiol 29:261–272. https://doi.org/10.1093/treephys/tpn024

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work supported by the Russian Science Foundation under Grant No. 18-16-00058.

Author information

Affiliations

Authors

Contributions

SV: drafting of manuscript, acquisition of data and interpretation of data analysis. OB: analysis of data and interpretation of data analysis. SG: study conception and design, making of clone collection.

Corresponding author

Correspondence to Svetlana N. Velisevich.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Velisevich, S.N., Bender, O.G. & Goroshkevich, S.N. The influence of scion donor tree age on the growth and morphogenesis of Siberian stone pine grafts. New Forests 52, 473–491 (2021). https://doi.org/10.1007/s11056-020-09805-2

Download citation

Keywords

  • Pinus sibirica Du Tour
  • Age
  • Comparative morphology
  • Grafts