Skip to main content

Gene flow and spontaneous seedling establishment around genetically modified eucalypt plantations

Abstract

Gene flow from an experimental plot of genetically modified eucalypt was studied by measuring pollen dispersal at various distances from the pollen donor up to a maximum distance of 1592 m. Spontaneous seedling establishment around mother trees, the potential receptors of GM pollen, was also verified. All trees analyzed in this study were identified as compatible for crossing with the pollen donor and their flowering time frame showed at least two weeks synchronism with GM pollen donors. As reported in previous studies, pollination occurred at short distances then declined rapidly within 200 m. The results obtained are consistent with data from other reports in different conditions. In the current study, only two GM seedlings out of 574 were detected at distances greater than 300 m from source (one at 400 and the other at 857 m), in rates varying from zero to 1.5% until 857 m, and null above this. Although effective GM crossings were found in compatible trees around the pollen donors, no spontaneous seedling establishment was observed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Assis, TF, Abad JIM, Aguiar AM (2015) Melhoramento genético de eucalipto. In: Shumacher MV, Vieira M (eds) Silvicultura do eucalipto no Brasil. p 308

  2. Barbour RC, Potts BM, Vaillancourt RE (2005) Pollen dispersal from exotic eucalyptus plantations. Cons Genet 6:253–257

    Article  Google Scholar 

  3. Birtchnell MJ, Gibson M (2006) Long-term flowering patterns of melliferous eucalyptus (Myrtaceae) species. Aust J Bot 54:745–754. https://doi.org/10.1071/BT05160

    Article  Google Scholar 

  4. Booth TH (2014) Modern tree colonizers from Australia into the rest of the world. In: Prins HHT, Gordon IJ (eds) Invasion biology and ecological theory: insights from a continent in transformation. Cambridge University Press, pp 304–323

  5. Bullock JM, González LM, Tamme R, Götzenberger L, White SM, Pärtel M, Hooftman DAP (2016) A synthesis of empirical plant dispersal kernels. J Ecol 105:6–19. https://doi.org/10.1111/1365-2745.12666

    Article  Google Scholar 

  6. Callaham MA, Stanturf JA, Hammond WJ, Rockwood DL, Wenk ES, O’Brien JJ (2013) Survey to evaluate escape of Eucalyptus spp. seedlings from plantations in southeastern USA. Int J For Res. https://doi.org/10.1155/2013/946374

    Article  Google Scholar 

  7. Delaporte KL, Conran JG, Sedgley M (2001) Interspecific hybridization within eucalyptus (Myrtaceae): subgenus Symphyomyrtus, sections Bisectae and Adnataria. Int J Plant Sci 162:1317–1326

    Article  Google Scholar 

  8. Fernandes P, Máguas C, Correia O, González-Moreno P (2018) What drives Eucalyptus globulus natural establishment outside plantations? The relative importance of climate, plantation and site characteristics. Biol Invasions 20:1129–1146. https://doi.org/10.1007/s10530-017-1614-y

    Article  Google Scholar 

  9. Ferreira M. 2015. A aventura dos eucaliptos, in: Schumacher, M.V, Viera, M. (Eds.), Silvicultura do Eucalipto no Brasil, Santa Maria—RS, pp 13–48.

  10. Forsyth GG, Richardson DM, Brown PJ, van Wilgen BW (2004) A rapid assessment of the invasive status of Eucalyptus species in two South African provinces. S Afr J Sci 100:75–77

    Google Scholar 

  11. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  Article  Google Scholar 

  12. Grattapaglia D, Vaillancourt RE, Shepherd M et al (2012) Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet Genomes 8:463–508. https://doi.org/10.1007/s11295-012-0491-x

    Article  Google Scholar 

  13. Häggman H, Raybould A, Borem A, Fox T, Handley L, Hertzberg M, Lu M-Z, Macdonald P, Oguchi T, Pasquali G, Pearson L, Peter G, Quemada H, Séguin A, Tattersall K, Ulian E, Walter C, McLean M (2013) Genetically engineered trees for plantation forests: key considerations for environmental risk assessment. Plant Biotechnol J Sep 11(7): 785–798. https://doi.org/10.1111/pbi.12100

  14. Harfouche A, Meilan R, Altman A (2011) Tree genetic engineering and applications to sustainable forestry and biomass production. Trends Biotechnol 29:9–17. https://doi.org/10.1016/j.tibtech.2010.09.003

    CAS  Article  PubMed  Google Scholar 

  15. Jones ME, Shepherd M, Henry R, Deves A (2008) Pollen flow in Eucalyptus grandis determined by paternity analysis using microsatellite markers. Tree Genet Genom 4:37–47

    Article  Google Scholar 

  16. Klein EK, Lavigne C, Picault H, Renard M, Gouyon PH (2006) Pollen dispersal of oilseed rape: estimation of the dispersal function and effects of field dimension. J Appl Ecol 43:141–151. https://doi.org/10.1111/j.1365-2664.2005.01108.x

    Article  Google Scholar 

  17. Larcombe MJ, Silva JS, Vaillancourt RE, Potts BM (2013) Assessing the invasive potential of Eucalyptus globulus in Australia: quantification of wildling establishment from plantations. Biol Invas 15:2763–2781. https://doi.org/10.1007/s10530-013-0492-1

    Article  Google Scholar 

  18. Lavigne C, Klein EK, Mari J-F, Le Ber F, Adamczyk K (2008) How do genetically modified (GM) crops contribute to background levels of GM pollen in an agricultural landscape? J Appl Ecol 45:1104–1113. https://doi.org/10.1111/j.1365-2664.2008.01504.x

    Article  Google Scholar 

  19. Miolaro LG, Gonçalves AN, Mendes JCT, Moreira RM, Silva PHM (2017) Spontaneous regeneration of eucalypts from seed production areas. Biol Invas 19:1733. https://doi.org/10.1007/s10530-017-1397-1

    Article  Google Scholar 

  20. Myburg AA, Potts BM, Marques C, Kisrst M, Gion JM, Grattapaglia D, Grima-Pettenat J (2007) Eucalypts. In: Kole C (ed) Genome mapping and molecular breeding in plants. Springer, Berlin, pp 115–160

    Google Scholar 

  21. Nature Biotechnology (2015) Brazil approves transgenic eucalyptus. Nat Biotechnol 33:577. https://doi.org/10.1038/nbt0615-577c

    CAS  Article  Google Scholar 

  22. Nicolle D (2018) Classification of the eucalypts (Angophora, Corymbia and Eucalyptus) Version 3. https://www.dn.com.au/Classification-Of-The-Eucalypts.pdf

  23. Nicolle D (2019) Classification of the eucalypts (Angophora, Corymbia and Eucalyptus) Version 4. http://www.dn.com.au/Classification-Of-The-Eucalypts.pdf

  24. Osakabe Y, Kajita S, Osakabe K (2011) Genetic engineering of woody plants: current and future targets in a stressful environment. Physiol Plant 142:105–117. https://doi.org/10.1111/j.1399-3054.2011.01451

    CAS  Article  PubMed  Google Scholar 

  25. Pacheco IA, Kageyama PY, Wiendl EM, Berti Filho E (1986) Estudo da dispersão de pólen de Eucalyptus saligna Smith por abelhas Apis mellifera L. utilizando-se o radio fósforo 32P. Scientia Forestalis 34:47–52

    Google Scholar 

  26. Pupin S, Sebbenn AM, Cambuim J, Silva AM, Zaruma DUG, Silva PHM, Rosse LN, Souza IC, Marino CL, Moraes MLT (2019) Effects of pollen contamination and non-random mating on inbreeding and outbreeding depression in a seedling seed orchard of Eucalyptus urophylla. For Ecol Manage 437:272–281. https://doi.org/10.1016/j.foreco.2019.01.050

    Article  Google Scholar 

  27. Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Div Dist 17:788–809

    Article  Google Scholar 

  28. Ritter M, Yost J (2009) Diversity, reproduction, and potential for invasiveness of eucalyptus in California. Madron˜o 56:155–167. https://doi.org/10.3120/0024-9637-56.3.155

    Article  Google Scholar 

  29. Shani Z, Dekel M, Tsabary G, Goren R, Shoseyov O (2004) Growth enhancement of transgenic poplar plants by overexpression of Arabidopsis thaliana endo-1,4–glucanase (cel1). Mol Breeding 14:321–330

    Article  Google Scholar 

  30. Shani Z, Dekel M, Roiz L, Horowitz M, Kolosovski N, Lapidot S, Alkan S, Koltai H, Tsabary G, Goren R, Shoseyov O (2006) Expression of endo-1,4-β-glucanase (cel1) in Arabidopsis thaliana is associated with plant growth, xylem development and cell wall thickening. Plant Cell Rep 25:1067–1074

    CAS  Article  Google Scholar 

  31. Silva PHM, Poggiani F, Sebbenn AM, Mori ES (2011) Can Eucalyptus invade native forest fragments close to commercial stands? For Ecol Manage 261:2075–2080. https://doi.org/10.1016/j.foreco.2011.03.001

    Article  Google Scholar 

  32. Silva PHM, Sebbenn AM, Grattapaglia D (2015) Pollen-mediated gene flow across fragmented clonal stands of hybrid eucalypts in an exotic environment. For Ecol Manage 356:293–298. https://doi.org/10.1016/j.foreco.2014.12.005

    Article  Google Scholar 

  33. Silva PHM, Bouillet J-P, de Paula RC (2016) Assessing the invasive potential of commercial Eucalyptus species in Brazil: Germination and early establishment. For Ecol Manage 374:129–135. https://doi.org/10.1016/j.foreco.2016.05.007

    Article  Google Scholar 

  34. Silva PHM, Sebbenn AM, Grattapaglia D, Conti JL Jr (2017) Realized pollen flow and wildling establishment from a genetically modified eucalypt field trial in Southeastern Brazil. For Ecol Manage 385:161–166. https://doi.org/10.1016/j.foreco.2016.11.043

    Article  Google Scholar 

  35. Southerton SG, Birt P, Porter J, Ford HA (2004) Review of gene movement by bats and birds and its potential significance for eucalypt plantation forestry. Aust Forestry 67(1):44–53

    Article  Google Scholar 

  36. Ziller SR, Dechoum MS, Zenni RD (2018) Predicting invasion risk of 16 species of eucalypts using a risk assessment protocol developed for Brazil. Austral Ecol. https://doi.org/10.1111/aec.12649

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to Eugenio César Ulian (in memoriam) for his key role in the conception of the study and enthusiastic help with analyses and evaluation. The authors also acknowledge Michael James May’s assistance with early critical reading and Sara El Kadri’s language proofreading. The supported by research fellowship granted by the National Council of Technological and Scientific Development (CNPq n. 302891/2019-6) to the first author.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paulo Henrique Muller da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva, P.H.M., Abrahão, O.S. Gene flow and spontaneous seedling establishment around genetically modified eucalypt plantations. New Forests 52, 349–361 (2021). https://doi.org/10.1007/s11056-020-09800-7

Download citation

Keywords

  • Genetically modified (GM) tree
  • GM pollen flow
  • GM wildling establishment
  • Isolated trees