Should we use meshes or solid tube shelters when planting in Mediterranean semiarid environments?

Abstract

Tree shelters in Mediterranean environments have a two-sided effect. They not only protect seedlings from browsing but also ameliorate microclimatic conditions, improving post-planting survival and growth. However, the ecophysiological basis of these effects are poorly understood. A factorial experiment combining light transmissivity and shelter type (solid tube vs. mesh wall) was carried out to assess the impact of contrasting microclimatic characteristics on seedling performance and physiological stress levels of shelters in two Mediterranean shrubland species (Quercus coccifera and Rhamnus lycioides) planted in a semiarid site. Even though seedlings in solid tube shelters experienced higher temperature and were slightly more photoinhibited, they had higher predawn water potential and, in general, better survival and growth than in mesh wall shelters. However, these effects were species-specific, with Rh. lycioides more favoured by solid wall shelters than Q. coccifera. However, root growth cannot explain these interactions between species and shelter type on seedling survival. Since light transmission had a marginal effect compared with wall type, we proposed that the observed effects and interaction with species are not dependent on light intensity or temperature but on other microclimatic differences like air velocity or light quality and distribution. Further studies should assess the importance of these factors on post-planting growth and physiological stress levels, which can be critical for matching the correct tree shelters type for each species in plantations in semiarid environments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alía Miranda R, García Del Barrio JM, Iglesias Sauce S, Mancha Núñez JA, de Miguel y Del Ángel J, Nicolás Peragón JL, Pérez Martín F, Sánchez de Ron D (2009) Regiones de procedencia de especies forestales españolas. Organismo Autónomo Parques Nacionales, Madrid

    Google Scholar 

  2. Baquedano FJ, Castillo FJ (2006) Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercis ilex. Trees 20:689–700

    Google Scholar 

  3. Bellot J, Ortiz de Urbina JM, Bonet A, Sánchez JR (2002) The effects of treeshelters on the growth of Quercus coccifera L. seedlings in a semiarid environment. Forestry 75(1):89–106

    Google Scholar 

  4. Bellot J, Maestre FT, Chirino E, Hernández N, de Urbina JO (2004) Afforestation with Pinus halepensis reduces native shrub performance in a Mediterranean semiarid area. Acta Oecol 25:7–15

    Google Scholar 

  5. Bergez JE, Dupraz ZC (1997) Transpiration rate of Prunus avium L. Seedlings inside an unventilated treeshelter. For Ecol Manag 97:255–264

    Google Scholar 

  6. Bergez JE, Dupraz ZC (2000) Effect of ventilation on growth of Prunus avium seedlings grown in treeshelters. Agric For Meteorol 104:199–214

    Google Scholar 

  7. Bergez JE, Dupraz ZC (2009) Radiation and thermal microclimate in tree shelter. Agric For Meteorol 149:179–186

    Google Scholar 

  8. Bjorkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    CAS  PubMed  Google Scholar 

  9. Burney OT, Jacobs DF (2018) Species selection—a fundamental silvicultural tool to promote forest regeneration under high animal browsing pressure. For Ecol Manag 408:67–74

    Google Scholar 

  10. Calvete C, Estrada R, Angulo E, Cabezas-Ruiz S (2004) Habitat factors related to wild rabbit conservation in an agricultural landscape. Landscape Ecol 19:531–542

    Google Scholar 

  11. Chirino Miranda E, Puertolas Simon E, Garcia Vinas JI, Gaston Gonzalez A, Prada Saez MA (2013) Rhamnus alaternus L. y Rhamnus lycioides L. In: Navarro Cerrillo RM, Nicolás Peragón JL, Prada Sáez MA, Serrada Hierro R, Pemán García J (eds) Producción y Manejo de semillas y plantas forestales. Naturaleza y Parques Nacionales. Serie Forestal. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid

    Google Scholar 

  12. Close DC, Ruthrof KX, Turner S, Rokich DP, Dixon KW (2009) Ecophysiology of species with distinct leaf morphologies: effects of plastic and shadecloth tree guards. Restor Ecol 17(1):33–41

    Google Scholar 

  13. Cortina J, Amat B, Castillo V, Fuentes D, Maestre FT, Padilla FM, Rojo L (2011) The restoration of vegetation cover in the semi-arid Iberian southeast. J Arid Environ 75:1377–1384

    Google Scholar 

  14. Defaa C, Elantry S, El Alam SL, Achour A, El Mousadik A, Msanda F (2015) Effects of tree shelters on the survival and growth of Argania spinosa seedlings in Mediterranean arid environment. Int J Ecol. https://doi.org/10.1155/2015/124075

    Article  Google Scholar 

  15. Del Campo A, Navarro RM, Aguililla A, Gonzalez E (2006) Effect of tree shelter design on water condensation and run-off and its potential benefit for reforestation establishment in semiarid climates. For Ecol Manag 235:107–115

    Google Scholar 

  16. Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    CAS  Google Scholar 

  17. Devine W, Harrington CA (2008) Influence of four tree shelter types on microclimate and seedling performance of Oregon white oak and western redcedar. Research Paper PNW-RP-576, USDA Forest Service, Pacific NorthWest Research Station

  18. Dupraz C, Bergez JE (1999) Carbon dioxide limitation of the photosynthesis of Prunus avium L. seedlings inside an unventilated treeshelter. For Ecol Manag 119:89–97

    Google Scholar 

  19. Gandullo JM (1985) Ecología Vegetal. Fundación Conde del Valle de Salazar, Madrid

    Google Scholar 

  20. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104

    Google Scholar 

  21. Gómez-Miguel VD, Badía-Villas D (2016) Soil distribution and classification. In: Gallardo JF (ed) The soils of Spain, World soils book series. Springer, Berlin, pp 11–48

    Google Scholar 

  22. Jacobs DF (2011) Reforestation of a salvage-logged high-elevation clearcut: Engelman spruce seedling response to tree shelters after 11 growing seasons. West J Appl For 26(2):53–56

    Google Scholar 

  23. Jiménez MN, Navarro FB, Ripoll MA, Bocio I, De Simón E (2005) Effect of shelter tubes on establishment and growth of Juniperus thurifera L. (Cupressaceae) seedlings in Mediterranean semi-arid environment. Ann For Sci 62:717–725

    Google Scholar 

  24. Kalaji HM, Schansker G, Ladle RJ et al (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kjelgren R, Rupp LA (1997) Establishment in treeshelters I: shelters reduce growth, water use, and hardiness, but not drought avoidance. HortScience 32:1281–1283

    Google Scholar 

  26. Lambers H, Chapin FS, Pons TJ (2008) Plant physiological ecology, 2nd edn. Springer, New York, p 604

    Google Scholar 

  27. Leverkus A, Castro J, Puerta-Piñero C, Rey Benayas JM (2013) Suitability of the management of habitat complexity, acorn burial depth, and a chemical repellent for post-fire reforestation of oaks. Ecol Eng 53:15–22

    Google Scholar 

  28. Maestre F, Cortina J (2003) Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe. Appl Soil Ecol 23:199–209

    Google Scholar 

  29. Maestre FT, Cortina J (2004) Are Pinus halepensis plantations useful as a restoration tool in semiarid Mediterranean areas? For Ecol Manag 198:303–317

    Google Scholar 

  30. Mariotti B, Maltoni A, Jacobs DF, Tani A (2015) Tree shelters affect shoot and root system growth and structure in Quercus robur during regeneration establishment. Eur J Forest Res 134(4):641–652

    Google Scholar 

  31. Martínez-Ferri E, Balaguer L, Valladares F, Chico JM, Manrique E (2000) Energy dissipation in drought-avoiding and drought-tolerant tree species at midday during the Mediterranean summer. Tree Physiol 20:131–138

    PubMed  Google Scholar 

  32. Matías L, Castro J, Villar-Salvador P, Quero JL, Jump AS (2017) Differential impact of hotter drought on seedling performance of five ecologically distinct pine species. Plant Ecol 218:201–212

    Google Scholar 

  33. Methy M, Gillon D, Houssard C (1997) Temperature-induced changes of photosystem II activity in Quercus ilex and Pinus halepensis. Can J For Res 27:31–38

    CAS  Google Scholar 

  34. Niinemets U, Keenan T (2014) Photosynthetic responses to stress in Mediterranean evergreens: mechanisms and models. Environ Exp Bot 103:24–41

    CAS  Google Scholar 

  35. Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica, Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, Bellaterra

    Google Scholar 

  36. Oliet JA, Jacobs DF (2007) Microclimatic conditions and plant morpho-physiological development within a tree shelter environment during establishment of Quercus ilex seedlings. Agric For Meteorol 144:58–72

    Google Scholar 

  37. Oliet JA, Navarro R, Contreras O (2003) Evaluación de la aplicación de mejoradores y tubos en repoblaciones forestales. Consejería de Medio Ambiente de la Junta de Andalucía, Andalusia

    Google Scholar 

  38. Oliet JA, Vázquez de Castro A, Puértolas J (2015) Establishing Quercus ilex under Mediterranean dry conditions: sowing recalcitrant acorns versus planting seedlings at different depths and tube shelter light transmissions. New Forest 46:869–883

    Google Scholar 

  39. Padilla FM, Miranda J, Pugnaire FI (2007) Early root growth plasticity in seedlings of three Mediterranean woody species. Plant Soil 296:103–113

    CAS  Google Scholar 

  40. Padilla FM, Miranda JD, Ortega R, Hervás M, Sánchez J, Pugnaire FI (2011) Does shelter enhance early seedling survival in dry environments? A test with eight Mediterranean species. Appl Veg Sci 14:31–39

    Google Scholar 

  41. Pemán García J, Navarro Cerrillo RM, Nicolás Peragón JL, Prada Sáez MA, Serrada Hierro R (eds) (2013) Producción y Manejo de semillas y plantas forestales. Naturaleza y Parques Nacionales. Serie Forestal. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid

    Google Scholar 

  42. Pemán J, Peguero-Pina JJ, Valladares F, Gil-Pelegrín E (2010) Evaluation of unventilated treeshelters in the context of Mediterranean climate: insights from a study on Quercus faginea seedlings assessed with a 3D architectural plant model. Ecol Eng 36:517–526

    Google Scholar 

  43. Piñeiro J, Maestre FT, Bartolomé L, Valdecantos A (2013) Ecotechnology as a tool for restoring degraded drylands: a meta-analysis of field experiments. Ecol Eng 61(2013):133–144

    Google Scholar 

  44. Puértolas J, Oliet JA, Jacobs DF, Benito LF, Peñuelas JL (2010) Is light the key factor for success of tube shelters in forest restoration plantings under Mediterranean climates? For Ecol Manag 260:610–617

    Google Scholar 

  45. Rosenberg ND, Blad BL, Berma SB (1983) Microclimate: the biological environment, 2nd edn. Wiley, New York, p 495

    Google Scholar 

  46. Sakcali MS, Ozturk M (2004) Eco-physiological behaviour of some mediterranean plants as suitable candidates for reclamation of degraded areas. J Arid Environ 57:1–13

    Google Scholar 

  47. Soliveres S, Monerris J, Cortina J (2008) El uso de parches artificiales mejora el rendimiento de una repoblación de Rhamnus lycioides en medio semiárido. Cuad Soc Esp Cienc For 28:125–130

    Google Scholar 

  48. Taylor TS, Loewenstein EF, Chappelka AH (2006) Effect of animal browse protection and fertilizer application on the establishment of planted Nuttall oak seedlings. New Forest 32:133–143

    Google Scholar 

  49. Townsend AJ, Retkute R, Chinnathambi K, Randall JW, Foulkes J, Carmo-Silva E, Murchie EH (2017) Suboptimal photosynthetic acclimation in wheat. Plant Physiol. https://doi.org/10.1104/pp.17.01213

    Article  PubMed  PubMed Central  Google Scholar 

  50. Trubat R, Cortina J, Vilagrosa A (2008) Short-term nitrogen deprivation increases field performance in nursery seedlings of Mediterranean woody species. J Arid Environ 72:879–890

    Google Scholar 

  51. Trubat R, Cortina J, Vilagrosa A (2011) Nutrient deprivation improves field performance of woody seedlinngs in a degraded semi-arid shrubland. Ecol Eng 37:1164–1173

    Google Scholar 

  52. Vallejo VR, Smanis A, Chirino E, Fuentes D, Valdecantos A, Vilagrosa A (2012) Perspectives in dryland restoration: approaches for climate change adaptation. New Forest 43:561–579

    Google Scholar 

  53. Van Lerbherghe P (2014) Proteger los árboles contra los daños de la fauna cinegética. Los protectores de malla Proyecto Pirinoble. Unión Europea. Institut pour le Développement Forestier, Paris

    Google Scholar 

  54. Vázquez de Castro A, Oliet JA, Puértolas J, Jacobs DF (2014) Light transmissivity of tube shelters affects root growth and biomass allocation of Quercus ilex L. and Pinus halepensis Mill. Ann For Sci 71:91–99

    Google Scholar 

  55. Vilagrosa A, Bellot J, Vallejo VR, Gil-Pelegrin E (2003) Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot 54:2015–2024

    CAS  PubMed  Google Scholar 

  56. Villar-Salvador P, Puértolas J, Cuesta B, Peñuelas JL, Uscola M, Heredia-Guerrero N, Rey Benayas JM (2012) Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival. New Forest 43(5–6):755–770

    Google Scholar 

  57. Ward JS, Gent Martin PN, Stephens GR (2000) Effects of planting stock quality and browse protection-type on height growth of northern red oak and eastern white pine. For Ecol Manag 127:205–216

    Google Scholar 

Download references

Acknowledgements

This study was funded by TRACE-Project PET2008_0325 (Spanish Ministry of Science and Innovation) and co-financed by Respol Química S.A, WWF program to restore Spanish forests and by Marie Skodowska-Curie Research and Innovation Staff Exchange (RISE) Program (SuFoRun #691149 Project). The comments of two anonymous reviewers substantially improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan A. Oliet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 210 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oliet, J.A., Blasco, R., Valenzuela, P. et al. Should we use meshes or solid tube shelters when planting in Mediterranean semiarid environments?. New Forests 50, 267–282 (2019). https://doi.org/10.1007/s11056-018-9659-z

Download citation

Keywords

  • Afforestation
  • Restoration
  • Water potential
  • Chlorophyll fluorescence
  • Quercus coccifera
  • Rhamnus lycioides